Advertisements
Advertisements
Question
Without using trigonometric table , evaluate :
`(sin47^circ/cos43^circ)^2 - 4cos^2 45^circ + (cos43^circ/sin47^circ)^2`
Solution
`(sin47^circ/cos43^circ)^2 - 4cos^2 45^circ + (cos43^circ/sin47^circ)^2`
⇒ `((sin47^circ)/(cos43^circ))^2 + (cos43^circ/sin47^circ)^2 - 4(1/sqrt(2))^2`
⇒ `(sin(90^circ - 43^circ)/cos43^circ)^2 + (cos(90^circ - 47^circ)/sin47^circ)^2 - 4(1/2)`
⇒ `(cos43^circ/cos43^circ)^2 + (sin47^circ/sin47^circ)^2 - 2`
⇒ 1 + 1 - 2 = 0
APPEARS IN
RELATED QUESTIONS
If `x/a=y/b = z/c` show that `x^3/a^3 + y^3/b^3 + z^3/c^3 = (3xyz)/(abc)`.
Prove the following trigonometric identities.
`1 + cot^2 theta/(1 + cosec theta) = cosec theta`
Prove the following identities:
`(1 + (secA - tanA)^2)/(cosecA(secA - tanA)) = 2tanA`
`cot^2 theta - 1/(sin^2 theta ) = -1`a
`(tan^2theta)/((1+ tan^2 theta))+ cot^2 theta/((1+ cot^2 theta))=1`
Without using trigonometric table , evaluate :
`cosec49°cos41° + (tan31°)/(cot59°)`
Prove that `(sec θ - 1)/(sec θ + 1) = ((sin θ)/(1 + cos θ ))^2`
If sin θ + cos θ = `sqrt(3)`, then prove that tan θ + cot θ = 1
Prove that cos2θ . (1 + tan2θ) = 1. Complete the activity given below.
Activity:
L.H.S = `square`
= `cos^2theta xx square .....[1 + tan^2theta = square]`
= `(cos theta xx square)^2`
= 12
= 1
= R.H.S
`sqrt((1 - cos^2theta) sec^2 theta) = tan theta`