Advertisements
Advertisements
Question
If `x/a=y/b = z/c` show that `x^3/a^3 + y^3/b^3 + z^3/c^3 = (3xyz)/(abc)`.
Solution
Let `x/a=y/b = z/c` = k
=> x = ak, y = bk, z = ck
L.H.S = `x^3/a^3 + y^3/b^3 + z^3/c^3`
`= (ak)^3/(a^3) + (bk)^3/b^3 + (ck)^3/c^3`
`= (a^3k^3)/a^3 + (b^3k^3)/b^3 + (c^3k^3)/c^3`
`= k^3 + k^3 + k^3`
= `3k^3`
R.H.S = `(3xyz)/(abc)`
`= (3(ak)(bk)(ck))/(abc)`
`= (3(k^3)(abc))/(abc)`
`= 3k^3`
= L.H.S
=> L.H.S = R.H.S
`=> x^3/a^3 + y^3/b^3 + z^3/c^3 = (3xyz)/(abc)`
APPEARS IN
RELATED QUESTIONS
Prove that sin6θ + cos6θ = 1 – 3 sin2θ. cos2θ.
Prove the following trigonometric identities.
`sqrt((1 - cos theta)/(1 + cos theta)) = cosec theta - cot theta`
Prove that:
(tan A + cot A) (cosec A – sin A) (sec A – cos A) = 1
What is the value of (1 + cot2 θ) sin2 θ?
Prove the following identity :
`tan^2θ/(tan^2θ - 1) + (cosec^2θ)/(sec^2θ - cosec^2θ) = 1/(sin^2θ - cos^2θ)`
If x = acosθ , y = bcotθ , prove that `a^2/x^2 - b^2/y^2 = 1.`
If sec θ = x + `1/(4"x"), x ≠ 0,` find (sec θ + tan θ)
Prove that (1 – cos2A) . sec2B + tan2B(1 – sin2A) = sin2A + tan2B
Proved that `(1 + secA)/secA = (sin^2A)/(1 - cos A)`.
Factorize: sin3θ + cos3θ
Hence, prove the following identity:
`(sin^3θ + cos^3θ)/(sin θ + cos θ) + sin θ cos θ = 1`