Advertisements
Advertisements
Question
Prove the following trigonometric identities.
`sqrt((1 - cos theta)/(1 + cos theta)) = cosec theta - cot theta`
Solution
We know that, `sin^2 theta + cos^2 theta = 1`
Multiplying numerator and denominator under the square root by `1 - cos theta)` we have
`sqrt((1 - cos theta)/(1 + cos theta)) = sqrt(((1 - cos theta)(1 - cos theta))/((1 + cos theta)(1 - cos theta)))`
`= sqrt((1 - cos theta)^2/(1 - cos^2 theta))`
`= sqrt((1 - cos theta)^2/sin^2 theta`
`= (1 - cos theta)/sin theta`
`= 1/sin theta - cos theta/sin theta`
`= cosec theta - cot theta`
APPEARS IN
RELATED QUESTIONS
Evaluate sin25° cos65° + cos25° sin65°
Prove the following identities:
(cosec A + sin A) (cosec A – sin A) = cot2 A + cos2 A
If sin A + cos A = m and sec A + cosec A = n, show that : n (m2 – 1) = 2 m
Show that none of the following is an identity:
(i) `cos^2theta + cos theta =1`
If `( sin theta + cos theta ) = sqrt(2) , " prove that " cot theta = ( sqrt(2)+1)`.
Write the value of `( 1- sin ^2 theta ) sec^2 theta.`
Write the value of `(sin^2 theta 1/(1+tan^2 theta))`.
If a cot θ + b cosec θ = p and b cot θ − a cosec θ = q, then p2 − q2
If cos (\[\alpha + \beta\]= 0 , then sin \[\left( \alpha - \beta \right)\] can be reduced to
Simplify
sin A `[[sinA -cosA],["cos A" " sinA"]] + cos A[[ cos A" sin A " ],[-sin A" cos A"]]`
Prove that `(cos θ)/(1 - sin θ) = (1 + sin θ)/(cos θ)`.
Prove the following identities: sec2 θ + cosec2 θ = sec2 θ cosec2 θ.
Choose the correct alternative:
sin θ = `1/2`, then θ = ?
`(1 - tan^2 45^circ)/(1 + tan^2 45^circ)` = ?
Prove that sin θ (1 – tan θ) – cos θ (1 – cot θ) = cosec θ – sec θ
If tan α + cot α = 2, then tan20α + cot20α = ______.
`sqrt((1 - cos^2theta) sec^2 theta) = tan theta`
sin(45° + θ) – cos(45° – θ) is equal to ______.
`(cos^2 θ)/(sin^2 θ) - 1/(sin^2 θ)`, in simplified form, is ______.
sec θ when expressed in term of cot θ, is equal to ______.