English

1-tan245∘1+tan245∘ = ? - Geometry Mathematics 2

Advertisements
Advertisements

Question

`(1 - tan^2 45^circ)/(1 + tan^2 45^circ)` = ?

Sum

Solution

`(1 - tan^2 45^circ)/(1 + tan^2 45^circ)` = `(1 - (1)^2)/(1 + (1)^2)`   ......[∵ tan 45° = 1]

= `(1 - 1)/(1 + 1)`

= `0/2`

= 0

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Trigonometry - Q.1 (B)

RELATED QUESTIONS

Prove that (1 + cot θ – cosec θ)(1+ tan θ + sec θ) = 2


Prove the following trigonometric identities.

`(tan^3 theta)/(1 + tan^2 theta) + (cot^3 theta)/(1 + cot^2 theta) = sec theta cosec theta - 2 sin theta cos theta`


Prove the following identities:

`(1 - sinA)/(1 + sinA) = (secA - tanA)^2`


Prove the following identities:

`1 - sin^2A/(1 + cosA) = cosA`


`tan theta /((1 - cot theta )) + cot theta /((1 - tan theta)) = (1+ sec theta cosec  theta)`


If `( cos theta + sin theta) = sqrt(2) sin theta , " prove that " ( sin theta - cos theta ) = sqrt(2) cos theta`


Write the value of `cosec^2 theta (1+ cos theta ) (1- cos theta).`


`If sin theta = cos( theta - 45° ),where   theta   " is   acute, find the value of "theta` .


If sinθ = `11/61`, find the values of cosθ using trigonometric identity.


Write the value of \[\cot^2 \theta - \frac{1}{\sin^2 \theta}\] 


If x = a sin θ and y = b cos θ, what is the value of b2x2 + a2y2?


Prove the following identity :

`(cosA + sinA)^2 + (cosA - sinA)^2 = 2`


Without using trigonometric table , evaluate : 

`sin72^circ/cos18^circ  - sec32^circ/(cosec58^circ)`


If tan θ = 2, where θ is an acute angle, find the value of cos θ. 


Prove that `(sec θ - 1)/(sec θ + 1) = ((sin θ)/(1 + cos θ ))^2`


Prove that `sqrt((1 + cos A)/(1 - cos A)) = (tan A + sin A)/(tan A. sin A)`


Prove that `cos θ/sin(90° - θ) + sin θ/cos (90° - θ) = 2`.


Prove that:  `1/(sec θ - tan θ) = sec θ + tan θ`.


If tan θ = `9/40`, complete the activity to find the value of sec θ.

Activity:

sec2θ = 1 + `square`     ......[Fundamental trigonometric identity]

sec2θ = 1 + `square^2`

sec2θ = 1 + `square` 

sec θ = `square` 


If tan θ + sec θ = l, then prove that sec θ = `(l^2 + 1)/(2l)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×