Advertisements
Advertisements
Question
If sinθ = `11/61`, find the values of cosθ using trigonometric identity.
Solution
sinθ = `11/61` ...[Given]
We have,
sin2θ + cos2θ = 1
⇒ cos2θ = 1 − sin2θ
⇒ `cos^2θ = 1 - (11/61)^2`
⇒ `cos^2θ = 1 - 121/3721`
⇒ `cos^2θ = (3721 - 121)/3721`
⇒ `cos^2θ = 3600/3721`
⇒ `cosθ = sqrt((60/61)^2)` ...[Taking square root of both sides]
⇒ cosθ = `60/61`
Thus, the value of cosθ is `60/61`.
RELATED QUESTIONS
If (secA + tanA)(secB + tanB)(secC + tanC) = (secA – tanA)(secB – tanB)(secC – tanC) prove that each of the side is equal to ±1. We have,
Prove that `(sin theta)/(1-cottheta) + (cos theta)/(1 - tan theta) = cos theta + sin theta`
Prove that `(tan^2 theta)/(sec theta - 1)^2 = (1 + cos theta)/(1 - cos theta)`
Prove the following trigonometric identities.
`(1 + sec theta)/sec theta = (sin^2 theta)/(1 - cos theta)`
Prove the following trigonometric identities
cosec6θ = cot6θ + 3 cot2θ cosec2θ + 1
Prove the following trigonometric identities.
`1/(sec A - 1) + 1/(sec A + 1) = 2 cosec A cot A`
If 3 sin θ + 5 cos θ = 5, prove that 5 sin θ – 3 cos θ = ± 3.
Prove the following identities:
`(costhetacottheta)/(1 + sintheta) = cosectheta - 1`
If x cos A + y sin A = m and x sin A – y cos A = n, then prove that : x2 + y2 = m2 + n2
Prove the following identities:
`((cosecA - cotA)^2 + 1)/(secA(cosecA - cotA)) = 2cotA`
`(1 + cot^2 theta ) sin^2 theta =1`
Write the value of `sin theta cos ( 90° - theta )+ cos theta sin ( 90° - theta )`.
What is the value of \[\frac{\tan^2 \theta - \sec^2 \theta}{\cot^2 \theta - {cosec}^2 \theta}\]
Write True' or False' and justify your answer the following:
\[ \cos \theta = \frac{a^2 + b^2}{2ab}\]where a and b are two distinct numbers such that ab > 0.
Prove the following identity :
`cosec^4A - cosec^2A = cot^4A + cot^2A`
If sec θ = `25/7`, then find the value of tan θ.
Prove that sec2θ + cosec2θ = sec2θ × cosec2θ
Prove that
sec2A – cosec2A = `(2sin^2"A" - 1)/(sin^2"A"*cos^2"A")`
Prove that sin θ (1 – tan θ) – cos θ (1 – cot θ) = cosec θ – sec θ