Advertisements
Advertisements
Question
Prove that sin θ (1 – tan θ) – cos θ (1 – cot θ) = cosec θ – sec θ
Solution
L.H.S = sin θ (1 – tan θ) – cos θ (1 – cot θ)
= `sintheta (1 - (sintheta)/(costheta)) - costheta (1 - (costheta)/(sintheta))`
= `sintheta - (sin^2theta)/costheta - costheta + (cos^2theta)/sintheta`
= `sintheta + (cos^2theta)/sintheta - (sin^2theta)/costheta - costheta`
= `(sin^2theta + cos^2theta)/sintheta - ((sin^2theta + cos^2theta)/costheta)`
= `1/sintheta - 1/costheta` ......[∵ sin2θ + cos2θ = 1]
= cosec θ – sec θ
= R.H.S
∴ sin θ (1 – tan θ) – cos θ (1 – cot θ) = cosec θ – sec θ
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
`(1 + sin theta)/cos theta + cos theta/(1 + sin theta) = 2 sec theta`
Prove the following trigonometric identities.
`(1 + cos theta - sin^2 theta)/(sin theta (1 + cos theta)) = cot theta`
Prove the following trigonometric identities
If x = a sec θ + b tan θ and y = a tan θ + b sec θ, prove that x2 − y2 = a2 − b2
Prove the following identities:
sec2 A . cosec2 A = tan2 A + cot2 A + 2
Prove the following identities:
`(1 - cosA)/sinA + sinA/(1 - cosA)= 2cosecA`
Prove the following identities:
cosec4 A (1 – cos4 A) – 2 cot2 A = 1
`sin^2 theta + 1/((1+tan^2 theta))=1`
Prove that `( sintheta - 2 sin ^3 theta ) = ( 2 cos ^3 theta - cos theta) tan theta`
If `secθ = 25/7 ` then find tanθ.
Four alternative answers for the following question are given. Choose the correct alternative and write its alphabet:
sin θ × cosec θ = ______
What is the value of (1 + cot2 θ) sin2 θ?
If cosec θ − cot θ = α, write the value of cosec θ + cot α.
(sec A + tan A) (1 − sin A) = ______.
Evaluate:
`(tan 65°)/(cot 25°)`
Prove that sin2 θ + cos4 θ = cos2 θ + sin4 θ.
Prove the following identities: cot θ - tan θ = `(2 cos^2 θ - 1)/(sin θ cos θ)`.
Prove the following identities.
`(1 - tan^2theta)/(cot^2 theta - 1)` = tan2 θ
If sin θ + cos θ = `sqrt(3)`, then prove that tan θ + cot θ = 1
`5/(sin^2theta) - 5cot^2theta`, complete the activity given below.
Activity:
`5/(sin^2theta) - 5cot^2theta`
= `square (1/(sin^2theta) - cot^2theta)`
= `5(square - cot^2theta) ......[1/(sin^2theta) = square]`
= 5(1)
= `square`
If sinθ – cosθ = 0, then the value of (sin4θ + cos4θ) is ______.