English

Prove that sin θ (1 – tan θ) – cos θ (1 – cot θ) = cosec θ – sec θ - Geometry Mathematics 2

Advertisements
Advertisements

Question

Prove that sin θ (1 – tan θ) – cos θ (1 – cot θ) = cosec θ – sec θ

Sum

Solution

L.H.S = sin θ (1 – tan θ) – cos θ (1 – cot θ)

= `sintheta (1 - (sintheta)/(costheta)) - costheta (1 - (costheta)/(sintheta))`

= `sintheta - (sin^2theta)/costheta - costheta + (cos^2theta)/sintheta`

= `sintheta + (cos^2theta)/sintheta - (sin^2theta)/costheta - costheta`

= `(sin^2theta + cos^2theta)/sintheta - ((sin^2theta + cos^2theta)/costheta)`

= `1/sintheta - 1/costheta`   ......[∵ sin2θ + cos2θ = 1]

= cosec θ – sec θ

= R.H.S

∴ sin θ (1 – tan θ) – cos θ (1 – cot θ) = cosec θ – sec θ

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Trigonometry - Q.4

RELATED QUESTIONS

Prove the following trigonometric identities.

`(1 + sin theta)/cos theta + cos theta/(1 + sin theta) = 2 sec theta`


Prove the following trigonometric identities.

`(1 + cos theta - sin^2 theta)/(sin theta (1 + cos theta)) = cot theta`


Prove the following trigonometric identities

If x = a sec θ + b tan θ and y = a tan θ + b sec θ, prove that x2 − y2 = a2 − b2


Prove the following identities:

sec2 A . cosec2 A = tan2 A + cot2 A + 2


Prove the following identities:

`(1 - cosA)/sinA + sinA/(1 - cosA)= 2cosecA`


Prove the following identities:

cosec4 A (1 – cos4 A) – 2 cot2 A = 1


`sin^2 theta + 1/((1+tan^2 theta))=1`


Prove that `( sintheta - 2 sin ^3 theta ) = ( 2 cos ^3 theta - cos theta) tan theta`


If `secθ = 25/7 ` then find tanθ.


Four alternative answers for the following question are given. Choose the correct alternative and write its alphabet:

sin θ × cosec θ = ______


What is the value of (1 + cot2 θ) sin2 θ?


If cosec θ − cot θ = α, write the value of cosec θ + cot α.


(sec A + tan A) (1 − sin A) = ______.


Evaluate:
`(tan 65°)/(cot 25°)`


Prove that sin2 θ + cos4 θ = cos2 θ + sin4 θ.


Prove the following identities: cot θ - tan θ = `(2 cos^2 θ - 1)/(sin θ cos θ)`.


Prove the following identities.

`(1 - tan^2theta)/(cot^2 theta - 1)` = tan2 θ


If sin θ + cos θ = `sqrt(3)`, then prove that tan θ + cot θ = 1


`5/(sin^2theta) - 5cot^2theta`, complete the activity given below.

Activity:

`5/(sin^2theta) - 5cot^2theta`

= `square (1/(sin^2theta) - cot^2theta)`

= `5(square - cot^2theta)   ......[1/(sin^2theta) = square]`

= 5(1)

= `square`


If sinθ – cosθ = 0, then the value of (sin4θ + cos4θ) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×