Advertisements
Advertisements
Question
Prove the following identities:
`(1 - cosA)/sinA + sinA/(1 - cosA)= 2cosecA`
Solution
`(1 - cosA)/sinA + sinA/(1 - cosA)`
= `((1 - cosA)^2 + sin^2A)/(sinA(1 - cosA))`
= `(1 + cos^2A - 2cosA + sin^2A)/(sinA(1 - cosA))`
= `(2 - 2cosA)/(sinA(1 - cosA))`
= `(2(1 - cosA))/(sinA(1 - cosA))`
= 2 cosec A
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
`(cot^2 A(sec A - 1))/(1 + sin A) = sec^2 A ((1 - sin A)/(1 + sec A))`
Prove the following trigonometric identities.
`(cot A + tan B)/(cot B + tan A) = cot A tan B`
Prove the following identities:
`cotA/(1 - tanA) + tanA/(1 - cotA) = 1 + tanA + cotA`
Prove that:
`1/(sinA - cosA) - 1/(sinA + cosA) = (2cosA)/(2sin^2A - 1)`
If `cos theta = 2/3 , " write the value of" (4+4 tan^2 theta).`
Prove that secθ + tanθ =`(costheta)/(1-sintheta)`.
Prove the following identity :
`cosec^4A - cosec^2A = cot^4A + cot^2A`
Without using trigonometric identity , show that :
`sec70^circ sin20^circ - cos20^circ cosec70^circ = 0`
Prove that `sqrt(2 + tan^2 θ + cot^2 θ) = tan θ + cot θ`.
Prove that: `(sec θ - tan θ)/(sec θ + tan θ ) = 1 - 2 sec θ.tan θ + 2 tan^2θ`