Advertisements
Advertisements
Question
Prove that `sqrt(2 + tan^2 θ + cot^2 θ) = tan θ + cot θ`.
Solution
LHS = `sqrt(2 + tan^2 θ + cot^2 θ)`
= `sqrt( tan^2 θ + cot^2θ + 2tan θ.cot θ)` ...[ ∵ tan θ.cot θ = 1 ]
= `sqrt( tan^2 θ + cot^2θ)`
= tan θ + cot θ
= RHS
Hence proved.
APPEARS IN
RELATED QUESTIONS
Prove that `\frac{\sin \theta -\cos \theta }{\sin \theta +\cos \theta }+\frac{\sin\theta +\cos \theta }{\sin \theta -\cos \theta }=\frac{2}{2\sin^{2}\theta -1}`
If cos θ + cos2 θ = 1, prove that sin12 θ + 3 sin10 θ + 3 sin8 θ + sin6 θ + 2 sin4 θ + 2 sin2 θ − 2 = 1
Prove the following identities:
`cosA/(1 - sinA) = sec A + tan A`
What is the value of (1 + cot2 θ) sin2 θ?
What is the value of \[\sin^2 \theta + \frac{1}{1 + \tan^2 \theta}\]
If a cos θ + b sin θ = 4 and a sin θ − b sin θ = 3, then a2 + b2 =
Prove the following identity :
`cosA/(1 + sinA) = secA - tanA`
Prove the following identity :
`tan^2A - sin^2A = tan^2A.sin^2A`
Prove the following identity :
`sqrt((1 + sinq)/(1 - sinq)) + sqrt((1- sinq)/(1 + sinq))` = 2secq
Prove that : `tan"A"/(1 - cot"A") + cot"A"/(1 - tan"A") = sec"A".cosec"A" + 1`.