Advertisements
Advertisements
Question
Prove the following identity :
`tan^2A - sin^2A = tan^2A.sin^2A`
Solution
LHS = `tan^2A - sin^2A`
= `sin^2A/cos^2A - sin^2A = (sin^2A(1 - cos^2A))/cos^2A`
= `sin^2A/cos^2A.sin^2A = tan^2A.sin^2A` = RHS
APPEARS IN
RELATED QUESTIONS
Prove the following identities:
`(i) (sinθ + cosecθ)^2 + (cosθ + secθ)^2 = 7 + tan^2 θ + cot^2 θ`
`(ii) (sinθ + secθ)^2 + (cosθ + cosecθ)^2 = (1 + secθ cosecθ)^2`
`(iii) sec^4 θ– sec^2 θ = tan^4 θ + tan^2 θ`
Prove the following trigonometric identities.
(1 + cot A − cosec A) (1 + tan A + sec A) = 2
Write the value of `(1 + tan^2 theta ) cos^2 theta`.
If `sin theta = x , " write the value of cot "theta .`
What is the value of (1 + tan2 θ) (1 − sin θ) (1 + sin θ)?
Prove the following identity :
`sec^2A + cosec^2A = sec^2Acosec^2A`
Prove the following identity :
`2(sin^6θ + cos^6θ) - 3(sin^4θ + cos^4θ) + 1 = 0`
Prove that : `1 - (cos^2 θ)/(1 + sin θ) = sin θ`.
Prove that (cosec A - sin A)( sec A - cos A) sec2 A = tan A.
Prove that `sin A/(sec A + tan A - 1) + cos A/(cosec A + cot A - 1) = 1`.