Advertisements
Advertisements
Question
Prove the following identity :
`2(sin^6θ + cos^6θ) - 3(sin^4θ + cos^4θ) + 1 = 0`
Solution
LHS = `2(sin^6θ + cos^6θ) - 3(sin^4θ + cos^4θ) + 1`
= `2(sin^6θ + cos^6θ) - 3(sin^4θ + cos^4θ) + 1`
= `2[(sin^2θ)^3 + (cos^2θ)^3] - 3(sin^4θ + cos^4θ) + 1`
= `2[(sin^2θ + cos^2θ){(sin^2θ)^2 + (cos^2θ)^2 - sin^2θcos^2θ}] - 3(sin^4θ + cos^4θ) + 1`
= `2{(sin^2θ)^2 + (cos^2θ)^2 - sin^2θcos^2θ} - 3(sin^4θ + cos^4θ) + 1`
= `2sin^4θ + 2cos^4θ - 2sin^2θcos^2θ - 3sin^4θ - 3cos^4θ + 1`
= `-sin^4θ - cos^4θ - 2sin^2θcos^2θ + 1`
= `-(sin^4θ + cos^4θ + 2sin^2θcos^2θ) + 1`
= `-(sin^2θ + cos^2θ)^2 + 1 = -1 + 1 = 0`
APPEARS IN
RELATED QUESTIONS
If secθ + tanθ = p, show that `(p^{2}-1)/(p^{2}+1)=\sin \theta`
Show that : `sinAcosA - (sinAcos(90^circ - A)cosA)/sec(90^circ - A) - (cosAsin(90^circ - A)sinA)/(cosec(90^circ - A)) = 0`
`(1+ cos theta + sin theta)/( 1+ cos theta - sin theta )= (1+ sin theta )/(cos theta)`
Write the value of cos1° cos 2°........cos180° .
Find the value of sin 30° + cos 60°.
Choose the correct alternative:
sec 60° = ?
Prove that sec2θ + cosec2θ = sec2θ × cosec2θ
sin4A – cos4A = 1 – 2cos2A. For proof of this complete the activity given below.
Activity:
L.H.S = `square`
= (sin2A + cos2A) `(square)`
= `1 (square)` .....`[sin^2"A" + square = 1]`
= `square` – cos2A .....[sin2A = 1 – cos2A]
= `square`
= R.H.S
`sqrt((1 - cos^2theta) sec^2 theta) = tan theta`
sin(45° + θ) – cos(45° – θ) is equal to ______.