Advertisements
Advertisements
Question
Choose the correct alternative:
sec 60° = ?
Options
`1/2`
2
`2/sqrt(3)`
`sqrt(3)`
Solution
2
APPEARS IN
RELATED QUESTIONS
Prove the following identities:
`(i) (sinθ + cosecθ)^2 + (cosθ + secθ)^2 = 7 + tan^2 θ + cot^2 θ`
`(ii) (sinθ + secθ)^2 + (cosθ + cosecθ)^2 = (1 + secθ cosecθ)^2`
`(iii) sec^4 θ– sec^2 θ = tan^4 θ + tan^2 θ`
If sinθ + cosθ = p and secθ + cosecθ = q, show that q(p2 – 1) = 2p
Prove the following trigonometric identities.
`(1 + cos theta + sin theta)/(1 + cos theta - sin theta) = (1 + sin theta)/cos theta`
Write the value of ` sec^2 theta ( 1+ sintheta )(1- sintheta).`
If 5 `tan theta = 4,"write the value of" ((cos theta - sintheta))/(( cos theta + sin theta))`
What is the value of \[\sin^2 \theta + \frac{1}{1 + \tan^2 \theta}\]
Write the value of \[\cot^2 \theta - \frac{1}{\sin^2 \theta}\]
If \[\sin \theta = \frac{1}{3}\] then find the value of 2cot2 θ + 2.
If sin θ − cos θ = 0 then the value of sin4θ + cos4θ
Prove the following identity :
`(1 + sinθ)/(cosecθ - cotθ) - (1 - sinθ)/(cosecθ + cotθ) = 2(1 + cotθ)`
If x sin3θ + y cos3 θ = sin θ cos θ and x sin θ = y cos θ , then show that x2 + y2 = 1.
Prove that `(sin 70°)/(cos 20°) + (cosec 20°)/(sec 70°) - 2 cos 70° xx cosec 20°` = 0.
Prove the following identities.
`sqrt((1 + sin theta)/(1 - sin theta)) + sqrt((1 - sin theta)/(1 + sin theta))` = 2 sec θ
If (sin α + cosec α)2 + (cos α + sec α)2 = k + tan2α + cot2α, then the value of k is equal to
Choose the correct alternative:
1 + cot2θ = ?
If tan θ + cot θ = 2, then tan2θ + cot2θ = ?
If 3 sin θ = 4 cos θ, then sec θ = ?
Prove that sin4A – cos4A = 1 – 2cos2A
sin(45° + θ) – cos(45° – θ) is equal to ______.
Prove the following that:
`tan^3θ/(1 + tan^2θ) + cot^3θ/(1 + cot^2θ)` = secθ cosecθ – 2 sinθ cosθ