Advertisements
Advertisements
Question
If x sin3θ + y cos3 θ = sin θ cos θ and x sin θ = y cos θ , then show that x2 + y2 = 1.
Solution
Given: x sin3 θ + y cos3 θ = sin θ. cos θ
⇒ (x sin θ) sin2θ + (y cos θ) cos2θ = sin θ. cos θ
⇒ (x sin θ) sin2θ + (x sin θ) cos2θ = sin θ. cos θ .....(∵ y cos θ = x sin θ)
⇒ x sin θ ( sin2θ + cos2θ ) = sin θ. cos θ
⇒ x sin θ = sin θ. cos θ
⇒ x = cos θ ....(1)
Again x sin θ = y cos θ
⇒ cos θ sin θ = y cos θ
⇒ y = sin θ .....(2)
Squaring and adding (1) and (2), we get the required result.
Hence proved.
APPEARS IN
RELATED QUESTIONS
If `sec alpha=2/sqrt3` , then find the value of `(1-cosecalpha)/(1+cosecalpha)` where α is in IV quadrant.
Prove the following trigonometric identities.
`sin^2 A + 1/(1 + tan^2 A) = 1`
Prove the following trigonometric identities.
(sec A − cosec A) (1 + tan A + cot A) = tan A sec A − cot A cosec A
Prove that: `sqrt((sec theta - 1)/(sec theta + 1)) + sqrt((sec theta + 1)/(sec theta - 1)) = 2 cosec theta`
cosec4θ − cosec2θ = cot4θ + cot2θ
If 5 `tan theta = 4,"write the value of" ((cos theta - sintheta))/(( cos theta + sin theta))`
\[\frac{1 - \sin \theta}{\cos \theta}\] is equal to
Prove the following identity :
`(cot^2θ(secθ - 1))/((1 + sinθ)) = sec^2θ((1-sinθ)/(1 + secθ))`
Choose the correct alternative:
sec2θ – tan2θ =?
`(1 - tan^2 45^circ)/(1 + tan^2 45^circ)` = ?