Advertisements
Advertisements
Question
\[\frac{1 - \sin \theta}{\cos \theta}\] is equal to
Options
0
1
sin θ + cos θ
sin θ − cos θ
Solution
The given expression is ` sin θ/(1-cot θ)+ cos θ/(1-tan θ)`
Simplifying the given expression, we have
`sin θ/(1-cot θ)+ cos θ/(1-tan θ)`
= `sinθ/(1-cosθ/sinθ)+cos θ/(1-sinθ/cos θ)`
=` sin θ/((sinθ-cos θ)/sin θ)+cos θ/((cos θ-sin θ)/cos θ)`
= `sin^2θ/(sin θ-cos θ)+cos^2θ/(cos θ-sin θ)`
= `sin^2θ/(sin θ-cos θ)+cos ^2θ/(-1(sin θ-cos θ))`
= `sin ^2θ/(sin θ-cos θ)-cos ^2 θ/(sin θ-cos θ)`
= `(sin^2θ-cos^2θ)/(sin θ-cos θ)`
=` ((sinθ+cos θ)(sinθ-cos θ))/(sin θ-cos θ)`
=` sin θ+cos θ`
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
`sqrt((1 - cos theta)/(1 + cos theta)) = cosec theta - cot theta`
Prove the following trigonometric identities.
`tan theta - cot theta = (2 sin^2 theta - 1)/(sin theta cos theta)`
Prove the following trigonometric identities.
`(1 + cos theta + sin theta)/(1 + cos theta - sin theta) = (1 + sin theta)/cos theta`
Prove the following trigonometric identities.
`(cos theta - sin theta + 1)/(cos theta + sin theta - 1) = cosec theta + cot theta`
Prove the following trigonometric identities.
`[tan θ + 1/cos θ]^2 + [tan θ - 1/cos θ]^2 = 2((1 + sin^2 θ)/(1 - sin^2 θ))`
If sin θ + cos θ = x, prove that `sin^6 theta + cos^6 theta = (4- 3(x^2 - 1)^2)/4`
If 2 sin A – 1 = 0, show that: sin 3A = 3 sin A – 4 sin3 A
Prove the following identity :
`(secA - 1)/(secA + 1) = sin^2A/(1 + cosA)^2`
Without using trigonometric table , evaluate :
`(sin49^circ/sin41^circ)^2 + (cos41^circ/sin49^circ)^2`
If sin θ = `1/2`, then find the value of θ.
Prove that : `1 - (cos^2 θ)/(1 + sin θ) = sin θ`.
If tan α = n tan β, sin α = m sin β, prove that cos2 α = `(m^2 - 1)/(n^2 - 1)`.
Prove that `sqrt((1 + cos A)/(1 - cos A)) = (tan A + sin A)/(tan A. sin A)`
Proved that cosec2(90° - θ) - tan2 θ = cos2(90° - θ) + cos2 θ.
Prove the following identities.
`(sin^3"A" + cos^3"A")/(sin"A" + cos"A") + (sin^3"A" - cos^3"A")/(sin"A" - cos"A")` = 2
Prove that `(tan^2 theta - 1)/(tan^2 theta + 1)` = 1 – 2 cos2θ
If a cos θ – b sin θ = c, then prove that (a sin θ + b cos θ) = `± sqrt("a"^2 + "b"^2 -"c"^2)`
Prove that `sqrt((1 + cos "A")/(1 - cos"A"))` = cosec A + cot A
Proved that `(1 + secA)/secA = (sin^2A)/(1 - cos A)`.
`1/sin^2θ - 1/cos^2θ - 1/tan^2θ - 1/cot^2θ - 1/sec^2θ - 1/("cosec"^2θ) = -3`, then find the value of θ.