English

1 − Sin θ Cos θ is Equal to - Mathematics

Advertisements
Advertisements

Question

\[\frac{1 - \sin \theta}{\cos \theta}\] is equal to

Options

  •  0

  • 1

  • sin θ + cos θ

  • sin θ − cos θ

MCQ

Solution

The given expression is ` sin θ/(1-cot θ)+ cos θ/(1-tan θ)` 

Simplifying the given expression, we have 

`sin θ/(1-cot θ)+ cos θ/(1-tan θ)` 

= `sinθ/(1-cosθ/sinθ)+cos θ/(1-sinθ/cos θ)`

=` sin θ/((sinθ-cos θ)/sin θ)+cos θ/((cos θ-sin θ)/cos θ)` 

= `sin^2θ/(sin θ-cos θ)+cos^2θ/(cos θ-sin θ)` 

= `sin^2θ/(sin θ-cos θ)+cos ^2θ/(-1(sin θ-cos θ))` 

= `sin ^2θ/(sin θ-cos θ)-cos ^2 θ/(sin θ-cos θ)` 

= `(sin^2θ-cos^2θ)/(sin θ-cos θ)` 

=` ((sinθ+cos θ)(sinθ-cos θ))/(sin θ-cos θ)`

=` sin θ+cos θ`

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Trigonometric Identities - Exercise 11.4 [Page 57]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 11 Trigonometric Identities
Exercise 11.4 | Q 8 | Page 57

RELATED QUESTIONS

Prove the following trigonometric identities.

`sqrt((1 - cos theta)/(1 + cos theta)) = cosec theta - cot theta`


Prove the following trigonometric identities.

`tan theta - cot theta = (2 sin^2 theta - 1)/(sin theta cos theta)`


Prove the following trigonometric identities.

`(1 + cos theta + sin theta)/(1 + cos theta - sin theta) = (1 + sin theta)/cos theta`


Prove the following trigonometric identities.

`(cos theta - sin theta + 1)/(cos theta + sin theta - 1) = cosec theta  + cot theta`


Prove the following trigonometric identities.

`[tan θ + 1/cos θ]^2 + [tan θ - 1/cos θ]^2 = 2((1 + sin^2 θ)/(1 - sin^2 θ))`


If sin θ + cos θ = x, prove that  `sin^6 theta + cos^6 theta = (4- 3(x^2 - 1)^2)/4`


If 2 sin A – 1 = 0, show that: sin 3A = 3 sin A – 4 sin3 A


Prove the following identity :

`(secA - 1)/(secA + 1) = sin^2A/(1 + cosA)^2`


Without using trigonometric table , evaluate : 

`(sin49^circ/sin41^circ)^2 + (cos41^circ/sin49^circ)^2`


If sin θ = `1/2`, then find the value of θ. 


Prove that : `1 - (cos^2 θ)/(1 + sin θ) = sin θ`.


If tan α = n tan β, sin α = m sin β, prove that cos2 α  = `(m^2 - 1)/(n^2 - 1)`.


Prove that `sqrt((1 + cos A)/(1 - cos A)) = (tan A + sin A)/(tan A. sin A)`


Proved that cosec2(90° - θ) - tan2 θ = cos2(90° - θ)  +  cos2 θ.


Prove the following identities.

`(sin^3"A" + cos^3"A")/(sin"A" + cos"A") + (sin^3"A" - cos^3"A")/(sin"A" - cos"A")` = 2


Prove that `(tan^2 theta - 1)/(tan^2 theta + 1)` = 1 – 2 cos2θ


If a cos θ – b sin θ = c, then prove that (a sin θ + b cos θ) = `±  sqrt("a"^2 + "b"^2 -"c"^2)`


Prove that `sqrt((1 + cos "A")/(1 - cos"A"))` = cosec A + cot A


Proved that `(1 + secA)/secA = (sin^2A)/(1 - cos A)`.


`1/sin^2θ - 1/cos^2θ - 1/tan^2θ - 1/cot^2θ - 1/sec^2θ - 1/("cosec"^2θ) = -3`, then find the value of θ.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×