Advertisements
Advertisements
प्रश्न
\[\frac{1 - \sin \theta}{\cos \theta}\] is equal to
पर्याय
0
1
sin θ + cos θ
sin θ − cos θ
उत्तर
The given expression is ` sin θ/(1-cot θ)+ cos θ/(1-tan θ)`
Simplifying the given expression, we have
`sin θ/(1-cot θ)+ cos θ/(1-tan θ)`
= `sinθ/(1-cosθ/sinθ)+cos θ/(1-sinθ/cos θ)`
=` sin θ/((sinθ-cos θ)/sin θ)+cos θ/((cos θ-sin θ)/cos θ)`
= `sin^2θ/(sin θ-cos θ)+cos^2θ/(cos θ-sin θ)`
= `sin^2θ/(sin θ-cos θ)+cos ^2θ/(-1(sin θ-cos θ))`
= `sin ^2θ/(sin θ-cos θ)-cos ^2 θ/(sin θ-cos θ)`
= `(sin^2θ-cos^2θ)/(sin θ-cos θ)`
=` ((sinθ+cos θ)(sinθ-cos θ))/(sin θ-cos θ)`
=` sin θ+cos θ`
APPEARS IN
संबंधित प्रश्न
If cosθ + sinθ = √2 cosθ, show that cosθ – sinθ = √2 sinθ.
Prove the following trigonometric identities.
tan2 A sec2 B − sec2 A tan2 B = tan2 A − tan2 B
Prove the following identities:
`cot^2A/(cosecA + 1)^2 = (1 - sinA)/(1 + sinA)`
Prove that:
2 sin2 A + cos4 A = 1 + sin4 A
`sin theta (1+ tan theta) + cos theta (1+ cot theta) = ( sectheta+ cosec theta)`
If `( tan theta + sin theta ) = m and ( tan theta - sin theta ) = n " prove that "(m^2-n^2)^2 = 16 mn .`
If `( sin theta + cos theta ) = sqrt(2) , " prove that " cot theta = ( sqrt(2)+1)`.
Write the value of `(1 + tan^2 theta ) cos^2 theta`.
If \[\cos A = \frac{7}{25}\] find the value of tan A + cot A.
If \[sec\theta + tan\theta = x\] then \[tan\theta =\]
If x = a cos θ and y = b sin θ, then b2x2 + a2y2 =
If sinA + cosA = m and secA + cosecA = n , prove that n(m2 - 1) = 2m
If x = asecθ + btanθ and y = atanθ + bsecθ , prove that `x^2 - y^2 = a^2 - b^2`
Prove that : `1 - (cos^2 θ)/(1 + sin θ) = sin θ`.
Prove that sin θ sin( 90° - θ) - cos θ cos( 90° - θ) = 0
Prove that `"cot A"/(1 - cot"A") + "tan A"/(1 - tan "A")` = – 1
If cos A + cos2A = 1, then sin2A + sin4 A = ?
Show that tan4θ + tan2θ = sec4θ – sec2θ.
Prove that `(cot A - cos A)/(cot A + cos A) = (cos^2 A)/(1 + sin A)^2`