Advertisements
Advertisements
प्रश्न
\[\frac{\sin \theta}{1 + \cos \theta}\]is equal to
पर्याय
\[\frac{\sin \theta}{1 + \cos \theta}\]
\[\frac{1 - \cos \theta}{\cos \theta}\]
\[\frac{1 - \cos \theta}{\cos \theta}\]
\[\frac{1 - \sin \theta}{\cos \theta}\]
उत्तर
The given expression is `sin θ/(1+cosθ)`
Multiplying both the numerator and denominator under the root by`(1-cosθ )` , we have
`sinθ/(1+cos θ)`
= `(sinθ (1-cos θ))/((1+cosθ)(1-cos θ))`
=`(sin θ(1-cos θ))/(1-cos^2 θ)`
= `(sin θ(1-cos θ))/sin^2 θ`
= `(1-cos θ)/sin θ`
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities
cosec6θ = cot6θ + 3 cot2θ cosec2θ + 1
Prove the following trigonometric identities.
`(1 + cos theta + sin theta)/(1 + cos theta - sin theta) = (1 + sin theta)/cos theta`
Prove the following trigonometric identities.
`(cos theta - sin theta + 1)/(cos theta + sin theta - 1) = cosec theta + cot theta`
Prove the following identities:
cosec A(1 + cos A) (cosec A – cot A) = 1
Prove the following identities:
`1/(1 - sinA) + 1/(1 + sinA) = 2sec^2A`
`tan theta/(1+ tan^2 theta)^2 + cottheta/(1+ cot^2 theta)^2 = sin theta cos theta`
`(1+ cos theta - sin^2 theta )/(sin theta (1+ cos theta))= cot theta`
`(sec theta + tan theta )/( sec theta - tan theta ) = ( sec theta + tan theta )^2 = 1+2 tan^2 theta + 25 sec theta tan theta `
If x= a sec `theta + b tan theta and y = a tan theta + b sec theta ,"prove that" (x^2 - y^2 )=(a^2 -b^2)`
If `secθ = 25/7 ` then find tanθ.
If cos (\[\alpha + \beta\]= 0 , then sin \[\left( \alpha - \beta \right)\] can be reduced to
Prove the following identity :
`sqrt((secq - 1)/(secq + 1)) + sqrt((secq + 1)/(secq - 1))` = 2 cosesq
Prove that sec2 (90° - θ) + tan2 (90° - θ) = 1 + 2 cot2 θ.
Prove that cosec2 (90° - θ) + cot2 (90° - θ) = 1 + 2 tan2 θ.
Without using a trigonometric table, prove that
`(cos 70°)/(sin 20°) + (cos 59°)/(sin 31°) - 8sin^2 30° = 0`.
If A + B = 90°, show that `(sin B + cos A)/sin A = 2tan B + tan A.`
Prove that `(tan^2 theta - 1)/(tan^2 theta + 1)` = 1 – 2 cos2θ
Choose the correct alternative:
cos 45° = ?
Prove that `sqrt((1 + cos "A")/(1 - cos"A"))` = cosec A + cot A
(sec2 θ – 1) (cosec2 θ – 1) is equal to ______.