मराठी

Sin θ 1 + Cos θ is Equal to - Mathematics

Advertisements
Advertisements

प्रश्न

\[\frac{\sin \theta}{1 + \cos \theta}\]is equal to 

पर्याय

  • \[\frac{\sin \theta}{1 + \cos \theta}\]

  • \[\frac{1 - \cos \theta}{\cos \theta}\]

  • \[\frac{1 - \cos \theta}{\cos \theta}\]

  • \[\frac{1 - \sin \theta}{\cos \theta}\]

MCQ

उत्तर

The given expression is `sin θ/(1+cosθ)`  

Multiplying both the numerator and denominator under the root by`(1-cosθ )` , we have 

`sinθ/(1+cos θ)`  

= `(sinθ (1-cos θ))/((1+cosθ)(1-cos θ))` 

=`(sin θ(1-cos θ))/(1-cos^2 θ)` 

= `(sin θ(1-cos θ))/sin^2 θ` 

= `(1-cos θ)/sin θ` 

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Trigonometric Identities - Exercise 11.4 [पृष्ठ ५७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 11 Trigonometric Identities
Exercise 11.4 | Q 7 | पृष्ठ ५७

संबंधित प्रश्‍न

Prove the following trigonometric identities

cosec6θ = cot6θ + 3 cot2θ cosec2θ + 1


Prove the following trigonometric identities.

`(1 + cos theta + sin theta)/(1 + cos theta - sin theta) = (1 + sin theta)/cos theta`


Prove the following trigonometric identities.

`(cos theta - sin theta + 1)/(cos theta + sin theta - 1) = cosec theta  + cot theta`


Prove the following identities:

cosec A(1 + cos A) (cosec A – cot A) = 1


Prove the following identities:

`1/(1 - sinA) + 1/(1 + sinA) = 2sec^2A`


`tan theta/(1+ tan^2 theta)^2 + cottheta/(1+ cot^2 theta)^2 = sin theta cos theta`


`(1+ cos  theta - sin^2 theta )/(sin theta (1+ cos theta))= cot theta`


`(sec theta + tan theta )/( sec theta - tan theta ) = ( sec theta + tan theta )^2 = 1+2 tan^2 theta + 25 sec theta tan theta `


If x= a sec `theta + b tan theta and y = a tan theta + b sec theta ,"prove that" (x^2 - y^2 )=(a^2 -b^2)`


If `secθ = 25/7 ` then find tanθ.


If  cos (\[\alpha + \beta\]= 0 , then sin \[\left( \alpha - \beta \right)\] can be reduced to  

 


Prove the following identity : 

`sqrt((secq - 1)/(secq + 1)) + sqrt((secq + 1)/(secq - 1))` = 2 cosesq


Prove that sec2 (90° - θ) + tan2 (90° - θ) = 1 + 2 cot2 θ.


Prove that cosec2 (90° - θ) + cot2 (90° - θ) = 1 + 2 tan2 θ.


Without using a trigonometric table, prove that
`(cos 70°)/(sin 20°) + (cos 59°)/(sin 31°) - 8sin^2 30° = 0`.


If A + B = 90°, show that `(sin B + cos A)/sin A = 2tan B + tan A.`


Prove that `(tan^2 theta - 1)/(tan^2 theta + 1)` = 1 – 2 cos2θ


Choose the correct alternative:

cos 45° = ?


Prove that `sqrt((1 + cos "A")/(1 - cos"A"))` = cosec A + cot A


(sec2 θ – 1) (cosec2 θ – 1) is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×