मराठी

Prove the Following Trigonometric Identities Cosec6θ = Cot6θ + 3 Cot2θ Cosec2θ + 1 - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following trigonometric identities

cosec6θ = cot6θ + 3 cot2θ cosec2θ + 1

उत्तर

We need to prove cosec6θ = cot6θ + 3 cot2θ cosec2θ + 1

Solving the L.H.S, we get

`cosec^6 theta = (cosec^2 theta)^3`

`= (1 + cot^2 theta)^3`     .......`(1 + cot^2 theta = cosec^2 theta)`

Further using the identity `(a + b)^3 = a^3 + b^3 + 3a^2b + 3ab^2`  we get

`(1 + cot^2 theta)^3 = 1 + cot^6 theta + 3(1)^2 (cot^2 theta) + 3(1) (cot^2 theta)^2`

`= 1 + cot^6 theta + 3 cot^2 theta + 3 cot^4 theta`

`= 1 + cot^6 theta + 3 cot^2 theta (1 + cot^2 theta)`

`= 1 + cot^6 theta + 3 cot^2 theta cosec^2 theta`    `(using 1 + cot^2 theta = cosec^2 theta)`

Hence proved.

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Trigonometric Identities - Exercise 11.1 [पृष्ठ ४४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 11 Trigonometric Identities
Exercise 11.1 | Q 32 | पृष्ठ ४४

संबंधित प्रश्‍न

Prove the following identities:

`( i)sin^{2}A/cos^{2}A+\cos^{2}A/sin^{2}A=\frac{1}{sin^{2}Acos^{2}A)-2`

`(ii)\frac{cosA}{1tanA}+\sin^{2}A/(sinAcosA)=\sin A\text{}+\cos A`

`( iii)((1+sin\theta )^{2}+(1sin\theta)^{2})/cos^{2}\theta =2( \frac{1+sin^{2}\theta}{1-sin^{2}\theta } )`


Prove the following trigonometric identities.

`(1 + cos A)/sin A = sin A/(1 - cos A)`


Prove the following identities:

`1/(1 + cosA) + 1/(1 - cosA) = 2cosec^2A`


Prove that

`cot^2A-cot^2B=(cos^2A-cos^2B)/(sin^2Asin^2B)=cosec^2A-cosec^2B`


Simplify : 2 sin30 + 3 tan45.


Write the value of \[\cot^2 \theta - \frac{1}{\sin^2 \theta}\] 


Prove that: 
(cosec θ - sinθ )(secθ - cosθ ) ( tanθ +cot θ) =1


Prove the following identity :

`(cosA + sinA)^2 + (cosA - sinA)^2 = 2`


Prove the following identity : 

`(secθ - tanθ)^2 = (1 - sinθ)/(1 + sinθ)`


Prove the following identity : 

`(1 + sinθ)/(cosecθ - cotθ) - (1 - sinθ)/(cosecθ + cotθ) = 2(1 + cotθ)`


Prove the following identity :

`(cot^2θ(secθ - 1))/((1 + sinθ)) = sec^2θ((1-sinθ)/(1 + secθ))`


Prove that `(tan θ + sin θ)/(tan θ - sin θ) = (sec θ + 1)/(sec θ - 1)`


Choose the correct alternative:

cot θ . tan θ = ?


sin2θ + sin2(90 – θ) = ?


Prove that `"cot A"/(1 - cot"A") + "tan A"/(1 - tan "A")` = – 1


Prove that `sqrt((1 + cos "A")/(1 - cos"A"))` = cosec A + cot A


Prove that `(1 + sec "A")/"sec A" = (sin^2"A")/(1 - cos"A")`


If 2sin2θ – cos2θ = 2, then find the value of θ.


(1 – cos2 A) is equal to ______.


Find the value of sin2θ  + cos2θ

Solution:

In Δ ABC, ∠ABC = 90°, ∠C = θ°

AB2 + BC2 = `square`   .....(Pythagoras theorem)

Divide both sides by AC2

`"AB"^2/"AC"^2 + "BC"^2/"AC"^2 = "AC"^2/"AC"^2`

∴ `("AB"^2/"AC"^2) + ("BC"^2/"AC"^2) = 1`

But `"AB"/"AC" = square and "BC"/"AC" = square`

∴ `sin^2 theta  + cos^2 theta = square` 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×