Advertisements
Advertisements
प्रश्न
Prove that
`cot^2A-cot^2B=(cos^2A-cos^2B)/(sin^2Asin^2B)=cosec^2A-cosec^2B`
उत्तर
`cot^2A-cot^2B`
`=cos^2A/sin^2A-cos^2B/sin^2B`
`=(cos^2Asin^2B-cos^2Bsin^2A)/(sin^2Asin^2B)`
`=(cos^2A(1-cos^2B)-cos^2B(1-cos^2A))/(sin^2Asin^2B)`
`=(cos^2A-cos^2Acos^2B-cos^2B+cos^2Bcos^2A)/(sin^2Asin^2B)`
`=(cos^2A-cos^2B)/(sin^2Asin^2B)`
`=(1-sin^2A-1+sin^2B)/(sin^2Asin^2B)`
`=(-sin^2A+sin^2B)/(sin^2Asin^2B)`
`=sin^2B/(sin^2AsinB)-sin^2A/(sin^2Asin^2B)`
`=1/sin^2A-1/sin^2B`
= cosec2A - cosec2B
APPEARS IN
संबंधित प्रश्न
Prove that:
sec2θ + cosec2θ = sec2θ x cosec2θ
Prove the following trigonometric identities.
`sqrt((1 - cos theta)/(1 + cos theta)) = cosec theta - cot theta`
`Prove the following trigonometric identities.
`(sec A - tan A)^2 = (1 - sin A)/(1 + sin A)`
Prove the following trigonometric identities.
`(cos A cosec A - sin A sec A)/(cos A + sin A) = cosec A - sec A`
Prove the following identities:
`tan^2A - tan^2B = (sin^2A - sin^2B)/(cos^2A * cos^2B)`
Prove the following identities:
`cosA/(1 - sinA) = sec A + tan A`
Prove the following identities:
`cosA/(1 + sinA) + tanA = secA`
`{1/((sec^2 theta- cos^2 theta))+ 1/((cosec^2 theta - sin^2 theta))} ( sin^2 theta cos^2 theta) = (1- sin^2 theta cos ^2 theta)/(2+ sin^2 theta cos^2 theta)`
If `cos B = 3/5 and (A + B) =- 90° ,`find the value of sin A.
If 5x = sec ` theta and 5/x = tan theta , " find the value of 5 "( x^2 - 1/( x^2))`