Advertisements
Advertisements
प्रश्न
Prove that:
sec2θ + cosec2θ = sec2θ x cosec2θ
उत्तर
L.H.S = sec2θ + cosec2θ
= 1 + tan2θ + 1 + cot2θ .....[∵ sec2θ = 1 + tan2θ and cosec2θ = 1 + cot2θ]
= 2 + tan2θ + cot2θ .....(i)
R.H.S = sec2θ x cosec2θ
= (1 + tan2θ) x (1 + cot2θ) .....[∵ sec2θ = 1 + tan2θ and cosec2θ = 1 + cot2θ]
= 1 + cot2θ + tan2θ + tan2θ x cot2θ
= 1 + cot2θ + tan2θ + tan2θ x (1/tan2θ) ...... [∵ cot2θ = 1/tan2θ]
= 2 + tan2θ + cot2θ .......(ii)
From (i) and (ii)
sec2θ + cosec2θ = sec2θ x cosec2θ
APPEARS IN
संबंधित प्रश्न
Evaluate sin25° cos65° + cos25° sin65°
Prove the following identities:
`1/(1 - sinA) + 1/(1 + sinA) = 2sec^2A`
Prove the following identities:
`secA/(secA + 1) + secA/(secA - 1) = 2cosec^2A`
Prove the following identities:
`(1 + sinA)/cosA + cosA/(1 + sinA) = 2secA`
Prove that:
`sqrt(sec^2A + cosec^2A) = tanA + cotA`
`sin^2 theta + 1/((1+tan^2 theta))=1`
What is the value of (1 − cos2 θ) cosec2 θ?
What is the value of \[\sin^2 \theta + \frac{1}{1 + \tan^2 \theta}\]
If sec2 θ (1 + sin θ) (1 − sin θ) = k, then find the value of k.
If a cos θ + b sin θ = m and a sin θ − b cos θ = n, then a2 + b2 =
Prove the following identity :
(secA - cosA)(secA + cosA) = `sin^2A + tan^2A`
Prove the following identity :
`sqrt((1 + sinq)/(1 - sinq)) + sqrt((1- sinq)/(1 + sinq))` = 2secq
Prove the following identity :
`[1/((sec^2θ - cos^2θ)) + 1/((cosec^2θ - sin^2θ))](sin^2θcos^2θ) = (1 - sin^2θcos^2θ)/(2 + sin^2θcos^2θ)`
Prove the following identity :
`(cot^2θ(secθ - 1))/((1 + sinθ)) = sec^2θ((1-sinθ)/(1 + secθ))`
Without using trigonometric identity , show that :
`tan10^circ tan20^circ tan30^circ tan70^circ tan80^circ = 1/sqrt(3)`
If x = r sin θ cos Φ, y = r sin θ sin Φ and z = r cos θ, prove that x2 + y2 + z2 = r2.
Prove that: `(sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A) = 2/(sin^2 A - cos^2 A)`.
If tan θ = `13/12`, then cot θ = ?
(1 + sin A)(1 – sin A) is equal to ______.
Prove the following identity:
(sin2θ – 1)(tan2θ + 1) + 1 = 0