Advertisements
Advertisements
प्रश्न
Prove the following identity :
`[1/((sec^2θ - cos^2θ)) + 1/((cosec^2θ - sin^2θ))](sin^2θcos^2θ) = (1 - sin^2θcos^2θ)/(2 + sin^2θcos^2θ)`
उत्तर
LHS = `[1/((sec^2θ - cos^2θ)) + 1/((cosec^2θ - sin^2θ))](sin^2θcos^2θ) `
= `[1/((1/cos^2θ - cos^2θ)) + 1/((1/sin^2θ - sin^2θ))](sin^2θcos^2θ)`
= `[1/(((1 - cos^4θ)/cos^2θ)) + 1/(((1 - sin^4θ)/sin^2θ)]](sin^2θcos^2θ)`
= `[cos^2θ/(1 - cos^4θ) + sin^2θ/(1 - sin^4θ))](sin^2θcos^2θ)`
= `[(cos^2θ - cos^2θsin^2θ + sin^2θ - sin^2θcos^4θ)/((1 - cos^4θ)(1 - sin^4θ))] (sin^2θcos^2θ)]`
= `[(cos^2θ + sin^2θ - cos^2θsin^2θ(cos^2θ + sin^2θ))/((1 - cos^2θ)(1 + cos^2θ)(1 - sin^2θ)(1 + sin^2θ))](sin^2θcos^2θ)`
= `[(1 - cos^2θsin^2θ)/(sin^2θ(1 + cos^2θ)cos^2θ(1 + sin^2θ))](sin^2θcos^2θ)`
(∵ `cos^2θ + sin^2θ = 1` , (`1 - cos^2θ`) = `sin^2θ` , (`1 - sin^2θ) = cos^2θ`)
= `(1 - cos^2θsin^2θ)/((1 + cos^2θ)(1 + sin^2θ)) = (1 - cos^2θsin^2θ)/(1 + sin^2θ + cos^2θ + sin^2θcos^2θ)`
= `(1 - cos^2θsin^2θ)/(1 + 1 + sin^2θcos^2θ) = (1 - sin^2θcos^2θ)/(2 + sin^2θcos^2θ)`
APPEARS IN
संबंधित प्रश्न
Prove that:
sec2θ + cosec2θ = sec2θ x cosec2θ
As observed from the top of an 80 m tall lighthouse, the angles of depression of two ships on the same side of the lighthouse of the horizontal line with its base are 30° and 40° respectively. Find the distance between the two ships. Give your answer correct to the nearest meter.
Prove that:
(sin A + cos A) (sec A + cosec A) = 2 + sec A cosec A
If` (sec theta + tan theta)= m and ( sec theta - tan theta ) = n ,` show that mn =1
\[\frac{x^2 - 1}{2x}\] is equal to
\[\frac{1 - \sin \theta}{\cos \theta}\] is equal to
If sin θ + sin2 θ = 1, then cos2 θ + cos4 θ =
Prove the following identity :
`(1 + sinA)/(1 - sinA) = (cosecA + 1)/(cosecA - 1)`
Find the value of x , if `cosx = cos60^circ cos30^circ - sin60^circ sin30^circ`
`5/(sin^2theta) - 5cot^2theta`, complete the activity given below.
Activity:
`5/(sin^2theta) - 5cot^2theta`
= `square (1/(sin^2theta) - cot^2theta)`
= `5(square - cot^2theta) ......[1/(sin^2theta) = square]`
= 5(1)
= `square`