Advertisements
Advertisements
प्रश्न
\[\frac{x^2 - 1}{2x}\] is equal to
पर्याय
sec θ + tan θ
sec θ − tan θ
sec2 θ + tan2 θ
sec2 θ − tan2 θ
उत्तर
The given expression is `sqrt ((1+sinθ)/(1-sinθ))`
Multiplying both the numerator and denominator under the root by `1+ sinθ`, we have
`sqrt (((1+ sinθ)(1+sin θ))/((1+sin θ)(1-sinθ)))`
`=sqrt((1+sinθ)/((1- sin^2θ)))`
`= sqrt((1+ sinθ)^2/cos^2θ)`
=`(1+sinθ)/cosθ`
=` 1/cosθ+sinθ/cosθ`
=` sec θ+tan θ`
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
`( i)sin^{2}A/cos^{2}A+\cos^{2}A/sin^{2}A=\frac{1}{sin^{2}Acos^{2}A)-2`
`(ii)\frac{cosA}{1tanA}+\sin^{2}A/(sinAcosA)=\sin A\text{}+\cos A`
`( iii)((1+sin\theta )^{2}+(1sin\theta)^{2})/cos^{2}\theta =2( \frac{1+sin^{2}\theta}{1-sin^{2}\theta } )`
Prove the following trigonometric identities.
`(1 + cos theta - sin^2 theta)/(sin theta (1 + cos theta)) = cot theta`
Prove the following trigonometric identities.
sin2 A cos2 B − cos2 A sin2 B = sin2 A − sin2 B
Prove the following identities:
`(sec A - 1)/(sec A + 1) = (1 - cos A)/(1 + cos A)`
Prove the following identities:
`((1 + tan^2A)cotA)/(cosec^2A) = tan A`
`(cos ec^theta + cot theta )/( cos ec theta - cot theta ) = (cosec theta + cot theta )^2 = 1+2 cot^2 theta + 2cosec theta cot theta`
Show that none of the following is an identity:
`sin^2 theta + sin theta =2`
Write the value of `(1+ tan^2 theta ) ( 1+ sin theta ) ( 1- sin theta)`
If `sqrt(3) sin theta = cos theta and theta ` is an acute angle, find the value of θ .
Prove that:
`(sin^2θ)/(cosθ) + cosθ = secθ`
cos4 A − sin4 A is equal to ______.
If x = a sec θ cos ϕ, y = b sec θ sin ϕ and z = c tan θ, then\[\frac{x^2}{a^2} + \frac{y^2}{b^2}\]
Prove the following identity :
`sin^8θ - cos^8θ = (sin^2θ - cos^2θ)(1 - 2sin^2θcos^2θ)`
If `x/(a cosθ) = y/(b sinθ) "and" (ax)/cosθ - (by)/sinθ = a^2 - b^2 , "prove that" x^2/a^2 + y^2/b^2 = 1`
Prove that: `(sec θ - tan θ)/(sec θ + tan θ ) = 1 - 2 sec θ.tan θ + 2 tan^2θ`
Prove that the following identities:
Sec A( 1 + sin A)( sec A - tan A) = 1.
Prove that: `1/(sec θ - tan θ) = sec θ + tan θ`.
If sin θ + cos θ = `sqrt(3)`, then prove that tan θ + cot θ = 1
Prove that `(tan(90 - theta) + cot(90 - theta))/("cosec" theta)` = sec θ
`1/sin^2θ - 1/cos^2θ - 1/tan^2θ - 1/cot^2θ - 1/sec^2θ - 1/("cosec"^2θ) = -3`, then find the value of θ.