Advertisements
Advertisements
प्रश्न
Prove that:
`(sin^2θ)/(cosθ) + cosθ = secθ`
उत्तर
LHS = `(sin^2θ)/(cosθ) + cosθ = secθ`
= `(sin^2θ + cos^2θ)/(cosθ)`
= `1/(cosθ)` ...(sin2θ + cos2θ = 1)
= secθ ...`(1/cosθ = secθ)`
R.H.S
LHS = RHS
Hence proved.
संबंधित प्रश्न
Evaluate
`(sin ^2 63^@ + sin^2 27^@)/(cos^2 17^@+cos^2 73^@)`
Prove the following trigonometric identities.
`tan theta/(1 - cot theta) + cot theta/(1 - tan theta) = 1 + tan theta + cot theta`
If x = a sec θ cos ϕ, y = b sec θ sin ϕ and z = c tan θ, show that `x^2/a^2 + y^2/b^2 - x^2/c^2 = 1`
Prove the following identities:
`(1 - cosA)/sinA + sinA/(1 - cosA)= 2cosecA`
Prove the following identities:
`cotA/(1 - tanA) + tanA/(1 - cotA) = 1 + tanA + cotA`
Prove the following identities:
`(sinA - cosA + 1)/(sinA + cosA - 1) = cosA/(1 - sinA)`
`1+((tan^2 theta) cot theta)/(cosec^2 theta) = tan theta`
Write the value of `sin theta cos ( 90° - theta )+ cos theta sin ( 90° - theta )`.
Write the value of tan1° tan 2° ........ tan 89° .
The value of \[\sqrt{\frac{1 + \cos \theta}{1 - \cos \theta}}\]
\[\frac{\tan \theta}{\sec \theta - 1} + \frac{\tan \theta}{\sec \theta + 1}\] is equal to
Prove the following identity :
`cosA/(1 - tanA) + sinA/(1 - cotA) = sinA + cosA`
Prove that:
`sqrt((sectheta - 1)/(sec theta + 1)) + sqrt((sectheta + 1)/(sectheta - 1)) = 2cosectheta`
A moving boat is observed from the top of a 150 m high cliff moving away from the cliff. The angle of depression of the boat changes from 60° to 45° in 2 minutes. Find the speed of the boat in m/min.
Prove that `sin^2 θ/ cos^2 θ + cos^2 θ/sin^2 θ = 1/(sin^2 θ. cos^2 θ) - 2`.
Prove that cos θ sin (90° - θ) + sin θ cos (90° - θ) = 1.
Prove that: `(sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A) = 2/(sin^2 A - cos^2 A)`.
Choose the correct alternative:
tan (90 – θ) = ?
If 5 sec θ – 12 cosec θ = 0, then find values of sin θ, sec θ
(tan θ + 2)(2 tan θ + 1) = 5 tan θ + sec2θ.