Advertisements
Advertisements
प्रश्न
Prove the following identities:
`(sinA - cosA + 1)/(sinA + cosA - 1) = cosA/(1 - sinA)`
उत्तर
`(sinA-cosA+1)/(sinA+cosA-1)`
= `(sinA - cosA + 1)/(sinA + cosA - 1) xx (sinA - (cosA - 1))/(sinA - (cosA - 1))`
= `(sinA - cosA + 1)^2/(sin^2A - (cosA - 1)^2)`
= `(sin^2A + cos^2A + 1 - 2sinAcosA - 2cosA + 2sinA)/(sin^2A - cos^2A - 1 + 2cosA)`
= `(1 + 1 - 2sinAcosA - 2cosA + 2sinA)/(-cos^2A - cos^2A + 2cosA)`
= `(2(1 - cosA) + 2sinA(1 - cosA))/(2cosA(1 - cosA)`
= `(1 + sinA)/cosA`
= `(1 + sinA)/cosA xx (1 - sinA)/(1 - sinA)`
= `cos^2A/(cosA(1 - sinA))`
= `cosA/(1 - sinA)`
APPEARS IN
संबंधित प्रश्न
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(cos A-sinA+1)/(cosA+sinA-1)=cosecA+cotA ` using the identity cosec2 A = 1 cot2 A.
Prove the following trigonometric identities.
`sqrt((1 - cos theta)/(1 + cos theta)) = cosec theta - cot theta`
Prove the following trigonometric identities.
`(tan^2 A)/(1 + tan^2 A) + (cot^2 A)/(1 + cot^2 A) = 1`
Prove that
`sqrt((1 + sin θ)/(1 - sin θ)) + sqrt((1 - sin θ)/(1 + sin θ)) = 2 sec θ`
If `(cot theta ) = m and ( sec theta - cos theta) = n " prove that " (m^2 n)(2/3) - (mn^2)(2/3)=1`
Write the value of `4 tan^2 theta - 4/ cos^2 theta`
If 5 `tan theta = 4,"write the value of" ((cos theta - sintheta))/(( cos theta + sin theta))`
`If sin theta = cos( theta - 45° ),where theta " is acute, find the value of "theta` .
Prove that : `(sin(90° - θ) tan(90° - θ) sec (90° - θ))/(cosec θ. cos θ. cot θ) = 1`
If 2 cos θ + sin θ = `1(θ ≠ π/2)`, then 7 cos θ + 6 sin θ is equal to ______.