Advertisements
Advertisements
प्रश्न
Prove the following identities:
`(sinA - cosA + 1)/(sinA + cosA - 1) = cosA/(1 - sinA)`
उत्तर
`(sinA-cosA+1)/(sinA+cosA-1)`
= `(sinA - cosA + 1)/(sinA + cosA - 1) xx (sinA - (cosA - 1))/(sinA - (cosA - 1))`
= `(sinA - cosA + 1)^2/(sin^2A - (cosA - 1)^2)`
= `(sin^2A + cos^2A + 1 - 2sinAcosA - 2cosA + 2sinA)/(sin^2A - cos^2A - 1 + 2cosA)`
= `(1 + 1 - 2sinAcosA - 2cosA + 2sinA)/(-cos^2A - cos^2A + 2cosA)`
= `(2(1 - cosA) + 2sinA(1 - cosA))/(2cosA(1 - cosA)`
= `(1 + sinA)/cosA`
= `(1 + sinA)/cosA xx (1 - sinA)/(1 - sinA)`
= `cos^2A/(cosA(1 - sinA))`
= `cosA/(1 - sinA)`
APPEARS IN
संबंधित प्रश्न
Prove that `\frac{\sin \theta -\cos \theta }{\sin \theta +\cos \theta }+\frac{\sin\theta +\cos \theta }{\sin \theta -\cos \theta }=\frac{2}{2\sin^{2}\theta -1}`
If `x/a=y/b = z/c` show that `x^3/a^3 + y^3/b^3 + z^3/c^3 = (3xyz)/(abc)`.
`If sin theta = cos( theta - 45° ),where theta " is acute, find the value of "theta` .
What is the value of (1 − cos2 θ) cosec2 θ?
If \[\sin \theta = \frac{1}{3}\] then find the value of 2cot2 θ + 2.
Prove the following identity :
`sec^2A.cosec^2A = tan^2A + cot^2A + 2`
Prove the following identity :
`cosecA + cotA = 1/(cosecA - cotA)`
Prove that sec2 (90° - θ) + tan2 (90° - θ) = 1 + 2 cot2 θ.
If sin θ + cos θ = a and sec θ + cosec θ = b , then the value of b(a2 – 1) is equal to
If 5 sec θ – 12 cosec θ = 0, then find values of sin θ, sec θ