मराठी

Write the Value of `Sin Theta Cos ( 90° - Theta )+ Cos Theta Sin ( 90° - Theta )`. - Mathematics

Advertisements
Advertisements

प्रश्न

Write the value of `sin theta cos ( 90° - theta )+ cos theta sin ( 90° - theta )`. 

उत्तर

`sin theta  cos theta (90°  - theta ) + cos theta sin ( 90°  - theta)`

     = ` sin theta sin theta + cos theta  cos theta `

     =` sin^2 theta + cos^2 theta `

     = 1

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Trigonometric Identities - Exercises 3

APPEARS IN

आर एस अग्रवाल Mathematics [English] Class 10
पाठ 8 Trigonometric Identities
Exercises 3 | Q 7

संबंधित प्रश्‍न

Prove the following identities:

`(i) 2 (sin^6 θ + cos^6 θ) –3(sin^4 θ + cos^4 θ) + 1 = 0`

`(ii) (sin^8 θ – cos^8 θ) = (sin^2 θ – cos^2 θ) (1 – 2sin^2 θ cos^2 θ)`


If sinθ + sin2 θ = 1, prove that cos2 θ + cos4 θ = 1


Prove the following trigonometric identities.

(sec2 θ − 1) (cosec2 θ − 1) = 1


Prove the following trigonometric identities.

`((1 + tan^2 theta)cot theta)/(cosec^2 theta)   = tan theta`


Prove the following trigonometric identities.

(cosec θ − sec θ) (cot θ − tan θ) = (cosec θ + sec θ) ( sec θ cosec θ − 2)


Prove the following identities:

(sec A – cos A) (sec A + cos A) = sin2 A + tan2


`1/((1+tan^2 theta)) + 1/((1+ tan^2 theta))`


Write the value of ` sin^2 theta cos^2 theta (1+ tan^2 theta ) (1+ cot^2 theta).`


If \[\sin \theta = \frac{1}{3}\] then find the value of 9tan2 θ + 9. 


Prove the following identity :

`(tanθ + secθ - 1)/(tanθ - secθ + 1) = (1 + sinθ)/(cosθ)`


Prove the following identity : 

`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`


Prove the following identity : 

`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (cosA + 1)/sinA`


If `x/(a cosθ) = y/(b sinθ)   "and"  (ax)/cosθ - (by)/sinθ = a^2 - b^2 , "prove that"  x^2/a^2 + y^2/b^2 = 1`


Without using trigonometric table , evaluate : 

`cosec49°cos41° + (tan31°)/(cot59°)`


Express (sin 67° + cos 75°) in terms of trigonometric ratios of the angle between 0° and 45°.


Prove that `(sec θ - 1)/(sec θ + 1) = ((sin θ)/(1 + cos θ ))^2`


Prove that sec θ. cosec (90° - θ) - tan θ. cot( 90° - θ ) = 1.


Prove that: sin4 θ + cos4θ = 1 - 2sin2θ cos2 θ.


Prove that cos2θ . (1 + tan2θ) = 1. Complete the activity given below.

Activity:

L.H.S = `square`

= `cos^2theta xx square    .....[1 + tan^2theta = square]`

= `(cos theta xx square)^2`

= 12

= 1

= R.H.S


(tan θ + 2)(2 tan θ + 1) = 5 tan θ + sec2θ.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×