Advertisements
Advertisements
प्रश्न
Prove the following identity :
`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`
उत्तर
= LHS = `sqrt((1 - cosA)/(1 - cosA))`
= `sqrt((1 - cosA)/(1 + cosA) . (1 + cosA)/(1 + cosA))`
= `sqrt((1 - cos^2A)/(1 + cosA)^2)`
= `sqrt(sin^2A/(1 + cosA)^2)`
= `sinA/(1 + cosA)`
APPEARS IN
संबंधित प्रश्न
Evaluate
`(sin ^2 63^@ + sin^2 27^@)/(cos^2 17^@+cos^2 73^@)`
Prove that `sqrt(sec^2 theta + cosec^2 theta) = tan theta + cot theta`
Prove the following identities:
`cosecA + cotA = 1/(cosecA - cotA)`
`sqrt((1-cos theta)/(1+cos theta)) = (cosec theta - cot theta)`
`{1/((sec^2 theta- cos^2 theta))+ 1/((cosec^2 theta - sin^2 theta))} ( sin^2 theta cos^2 theta) = (1- sin^2 theta cos ^2 theta)/(2+ sin^2 theta cos^2 theta)`
If 5x = sec θ and \[\frac{5}{x} = \tan \theta\]find the value of \[5\left( x^2 - \frac{1}{x^2} \right)\]
Simplify
sin A `[[sinA -cosA],["cos A" " sinA"]] + cos A[[ cos A" sin A " ],[-sin A" cos A"]]`
a cot θ + b cosec θ = p and b cot θ + a cosec θ = q then p2 – q2 is equal to
If tan θ × A = sin θ, then A = ?
Prove that sec2θ – cos2θ = tan2θ + sin2θ