Advertisements
Advertisements
प्रश्न
Prove the following identity :
`sqrt((1 + cosA)/(1 - cosA)) = cosecA + cotA`
उत्तर
= `sqrt((1 + cosA)/(1 - cosA) . (1 + cosA)/(1 + cosA))`
= `sqrt((1 + cosA)^2/(1 - cos^2A)) = sqrt((1 + cosA)^2/sin^2A)`
= `sqrt((1 + cos^2A)/sinA) = sqrt(1/sinA + cos^2A/sinA)`
= `sqrt((cosecA + cot^2A)`
= cosecA + cotA
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
tan2 A sec2 B − sec2 A tan2 B = tan2 A − tan2 B
Prove the following identities:
(1 – tan A)2 + (1 + tan A)2 = 2 sec2A
Find the value of sin ` 48° sec 42° + cos 48° cosec 42°`
Four alternative answers for the following question are given. Choose the correct alternative and write its alphabet:
sin θ × cosec θ = ______
Without using trigonometric table , evaluate :
`cosec49°cos41° + (tan31°)/(cot59°)`
Evaluate:
sin2 34° + sin2 56° + 2 tan 18° tan 72° – cot2 30°
Prove that `sqrt((1 + sin θ)/(1 - sin θ))` = sec θ + tan θ.
Prove that the following identities:
Sec A( 1 + sin A)( sec A - tan A) = 1.
If `sqrt(3)` sin θ – cos θ = θ, then show that tan 3θ = `(3tan theta - tan^3 theta)/(1 - 3 tan^2 theta)`
If 5 tan β = 4, then `(5 sin β - 2 cos β)/(5 sin β + 2 cos β)` = ______.