Advertisements
Advertisements
प्रश्न
Find the value of sin ` 48° sec 42° + cos 48° cosec 42°`
उत्तर
sin 48° sec 42° + cos 48° cosec 42°
=`sin 48° cosec (90 ° - 42 °) + cos 48° sec (90° - 42°)
=` sin 48° cosec 48° + cos 48° sec 48°
=` sin 48° xx 1/ (sin 48°) + cos 48° xx 1/ ( cos 48 °)`
=1 + 1
=2
APPEARS IN
संबंधित प्रश्न
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`cos A/(1 + sin A) + (1 + sin A)/cos A = 2 sec A`
Prove the following trigonometric identities.
`(1 + sec theta)/sec theta = (sin^2 theta)/(1 - cos theta)`
if `x/a cos theta + y/b sin theta = 1` and `x/a sin theta - y/b cos theta = 1` prove that `x^2/a^2 + y^2/b^2 = 2`
Prove the following identities:
`(1+ sin A)/(cosec A - cot A) - (1 - sin A)/(cosec A + cot A) = 2(1 + cot A)`
`cot^2 theta - 1/(sin^2 theta ) = -1`a
`sin theta / ((1+costheta))+((1+costheta))/sin theta=2cosectheta`
`sqrt((1+sin theta)/(1-sin theta)) = (sec theta + tan theta)`
`(cos ec^theta + cot theta )/( cos ec theta - cot theta ) = (cosec theta + cot theta )^2 = 1+2 cot^2 theta + 2cosec theta cot theta`
`(sec theta + tan theta )/( sec theta - tan theta ) = ( sec theta + tan theta )^2 = 1+2 tan^2 theta + 25 sec theta tan theta `
`(cos theta cosec theta - sin theta sec theta )/(costheta + sin theta) = cosec theta - sec theta`
If `(cosec theta - sin theta )= a^3 and (sec theta - cos theta ) = b^3 , " prove that " a^2 b^2 ( a^2+ b^2 ) =1`
Write the value of `( 1- sin ^2 theta ) sec^2 theta.`
If \[\sin \theta = \frac{1}{3}\] then find the value of 9tan2 θ + 9.
Prove the following identity :
`sqrt((1 + cosA)/(1 - cosA)) = cosecA + cotA`
Prove the following identity :
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (cosA + 1)/sinA`
If A = 30°, verify that `sin 2A = (2 tan A)/(1 + tan^2 A)`.
Prove the following identities:
`1/(sin θ + cos θ) + 1/(sin θ - cos θ) = (2sin θ)/(1 - 2 cos^2 θ)`.
If sinA + sin2A = 1, then the value of the expression (cos2A + cos4A) is ______.
Prove the following:
`sintheta/(1 + cos theta) + (1 + cos theta)/sintheta` = 2cosecθ
If `sqrt(3) tan θ` = 1, then find the value of sin2θ – cos2θ.