Advertisements
Advertisements
प्रश्न
Prove the following:
`sintheta/(1 + cos theta) + (1 + cos theta)/sintheta` = 2cosecθ
उत्तर
L.H.S = `sintheta/(1 + cos theta) + (1 + cos theta)/sintheta`
Taking the L.C.M of the denominators,
We get,
= `(sin^2theta + (1 + cos theta)^2)/((1 + cos theta)* sintheta)`
= `(sin^2theta + 1 + cos^2theta + 2costheta)/((1 + costheta) * sin theta)`
Since, sin2θ + cos2θ = 1
= `(1 + 1 + 2costheta)/((1 + costheta) * sin theta)`
= `(2 + 2 cos theta)/((1 + cos theta) * sin theta)`
= `(2(1 + cos theta))/((1 + cos theta) * sin theta)`
Since, `1/sin theta` = cosec θ
= `2/sin theta`
= 2 cosec θ
R.H.S
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`cos A/(1 + sin A) + (1 + sin A)/cos A = 2 sec A`
Prove the following trigonometric identities.
`(1 + sin theta)/cos theta + cos theta/(1 + sin theta) = 2 sec theta`
Prove the following trigonometric identities.
`(cot A + tan B)/(cot B + tan A) = cot A tan B`
Prove the following identities:
(cos A + sin A)2 + (cos A – sin A)2 = 2
Prove that:
2 sin2 A + cos4 A = 1 + sin4 A
Write the value of `sin theta cos ( 90° - theta )+ cos theta sin ( 90° - theta )`.
Prove that:
`(sin^2θ)/(cosθ) + cosθ = secθ`
Simplify : 2 sin30 + 3 tan45.
The value of (1 + cot θ − cosec θ) (1 + tan θ + sec θ) is
If cos (\[\alpha + \beta\]= 0 , then sin \[\left( \alpha - \beta \right)\] can be reduced to
Prove the following identity :
`sqrt(cosec^2q - 1) = "cosq cosecq"`
Prove the following identity :
`sin^8θ - cos^8θ = (sin^2θ - cos^2θ)(1 - 2sin^2θcos^2θ)`
Without using trigonometric table , evaluate :
`(sin47^circ/cos43^circ)^2 - 4cos^2 45^circ + (cos43^circ/sin47^circ)^2`
If A = 60°, B = 30° verify that tan( A - B) = `(tan A - tan B)/(1 + tan A. tan B)`.
Prove that (cosec A - sin A)( sec A - cos A) sec2 A = tan A.
Prove that: `(sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A) = 2/(sin^2 A - cos^2 A)`.
Prove the following identities.
`(1 - tan^2theta)/(cot^2 theta - 1)` = tan2 θ
If `sqrt(3)` sin θ – cos θ = θ, then show that tan 3θ = `(3tan theta - tan^3 theta)/(1 - 3 tan^2 theta)`
Prove that `(tan^2 theta - 1)/(tan^2 theta + 1)` = 1 – 2 cos2θ
Prove the following:
`1 + (cot^2 alpha)/(1 + "cosec" alpha)` = cosec α