मराठी

Prove the following: sinθ1+cosθ+1+cosθsinθ = 2cosec - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following:

`sintheta/(1 + cos theta) + (1 + cos theta)/sintheta` = 2cosecθ

बेरीज

उत्तर

L.H.S = `sintheta/(1 + cos theta) + (1 + cos theta)/sintheta`

Taking the L.C.M of the denominators,

We get,

= `(sin^2theta + (1 + cos theta)^2)/((1 + cos theta)* sintheta)`

= `(sin^2theta + 1 + cos^2theta + 2costheta)/((1 + costheta) * sin theta)`

Since, sin2θ + cos2θ = 1

= `(1 + 1 + 2costheta)/((1 + costheta) * sin theta)`

= `(2 + 2 cos theta)/((1 + cos theta) * sin theta)`

= `(2(1 + cos theta))/((1 + cos theta) * sin theta)`

Since, `1/sin theta` = cosec θ

= `2/sin theta`

= 2 cosec θ

R.H.S

Hence proved.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Introduction To Trigonometry and Its Applications - Exercise 8.3 [पृष्ठ ९५]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 10
पाठ 8 Introduction To Trigonometry and Its Applications
Exercise 8.3 | Q 1 | पृष्ठ ९५

संबंधित प्रश्‍न

Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`cos A/(1 + sin A) + (1 + sin A)/cos A = 2 sec A`


Prove the following trigonometric identities.

`(1 + sin theta)/cos theta + cos theta/(1 + sin theta) = 2 sec theta`


Prove the following trigonometric identities.

`(cot A + tan B)/(cot B + tan A) = cot A tan B`


Prove the following identities:

(cos A + sin A)2 + (cos A – sin A)2 = 2


Prove that:

2 sin2 A + cos4 A = 1 + sin4


Write the value of `sin theta cos ( 90° - theta )+ cos theta sin ( 90° - theta )`. 


Prove that:

`(sin^2θ)/(cosθ) + cosθ = secθ`


Simplify : 2 sin30 + 3 tan45.


The value of (1 + cot θ − cosec θ) (1 + tan θ + sec θ) is 


If  cos (\[\alpha + \beta\]= 0 , then sin \[\left( \alpha - \beta \right)\] can be reduced to  

 


Prove the following identity : 

`sqrt(cosec^2q - 1) = "cosq  cosecq"`


Prove the following identity : 

`sin^8θ - cos^8θ = (sin^2θ - cos^2θ)(1 - 2sin^2θcos^2θ)`


Without using trigonometric table , evaluate : 

`(sin47^circ/cos43^circ)^2 - 4cos^2 45^circ + (cos43^circ/sin47^circ)^2`


If A = 60°, B = 30° verify that tan( A - B) = `(tan A - tan B)/(1 + tan A. tan B)`.


Prove that (cosec A - sin A)( sec A - cos A) sec2 A = tan A.


Prove that: `(sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A) = 2/(sin^2 A - cos^2 A)`.


Prove the following identities.

`(1 - tan^2theta)/(cot^2 theta - 1)` = tan2 θ


If `sqrt(3)` sin θ – cos θ = θ, then show that tan 3θ = `(3tan theta - tan^3 theta)/(1 - 3 tan^2 theta)`


Prove that `(tan^2 theta - 1)/(tan^2 theta + 1)` = 1 – 2 cos2θ


Prove the following:

`1 + (cot^2 alpha)/(1 + "cosec"  alpha)` = cosec α


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×