Advertisements
Advertisements
प्रश्न
Prove the following identities.
`(1 - tan^2theta)/(cot^2 theta - 1)` = tan2 θ
उत्तर
`(1 - tan^2theta)/(cot^2 theta - 1)` = tan2 θ
L.H.S. = `(1 - tan^2theta)/(cot^2 theta - 1)`
= `1 - tan^2theta ÷ 1/(tan^2theta) - 1`
= `1 - tan^2theta ÷ (1 - tan^2theta)/(tan^2theta)`
= `(1 - tan^2theta) xx (tan^2theta)/((1 - tan^2 theta))`
= tan2 θ
L.H.S. = R.H.S.
APPEARS IN
संबंधित प्रश्न
If (secA + tanA)(secB + tanB)(secC + tanC) = (secA – tanA)(secB – tanB)(secC – tanC) prove that each of the side is equal to ±1. We have,
Prove the following trigonometric identities.
`sqrt((1 - cos A)/(1 + cos A)) = cosec A - cot A`
Prove that:
(cosec A – sin A) (sec A – cos A) sec2 A = tan A
(i)` (1-cos^2 theta )cosec^2theta = 1`
`cot^2 theta - 1/(sin^2 theta ) = -1`a
If sin θ − cos θ = 0 then the value of sin4θ + cos4θ
Prove that : `tan"A"/(1 - cot"A") + cot"A"/(1 - tan"A") = sec"A".cosec"A" + 1`.
If sin θ + cos θ = `sqrt(3)`, then show that tan θ + cot θ = 1
Show that, cotθ + tanθ = cosecθ × secθ
Solution :
L.H.S. = cotθ + tanθ
= `cosθ/sinθ + sinθ/cosθ`
= `(square + square)/(sinθ xx cosθ)`
= `1/(sinθ xx cosθ)` ............... `square`
= `1/sinθ xx 1/square`
= cosecθ × secθ
L.H.S. = R.H.S
∴ cotθ + tanθ = cosecθ × secθ
If tan θ = `x/y`, then cos θ is equal to ______.