मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएस.एस.एल.सी. (इंग्रजी माध्यम) इयत्ता १०

Prove the following identities. tan4 θ + tan2 θ = sec4 θ – sec2 θ - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following identities.

tan4 θ + tan2 θ = sec4 θ – sec2 θ

बेरीज

उत्तर

tan4 θ + tan2 θ = sec4 θ – sec2 θ

L.H.S = tan4 θ + tan2 θ

Taking out tan2 θ as common

= tan2 θ (tan2 θ + 1)

We know that

1 +  tan2 θ = sec2 θ

i.e. tan2 θ = sec2 θ - 1

It can be written as

= (sec2 θ – 1) sec2 θ 

So we get

= sec4 θ – sec2 θ

= R.H.S

Therefore, it is proved.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Trigonometry - Exercise 6.1 [पृष्ठ २४९]

APPEARS IN

सामाचीर कलवी Mathematics [English] Class 10 SSLC TN Board
पाठ 6 Trigonometry
Exercise 6.1 | Q 1. (ii) | पृष्ठ २४९
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×