Advertisements
Advertisements
प्रश्न
Prove the following identities.
tan4 θ + tan2 θ = sec4 θ – sec2 θ
उत्तर
tan4 θ + tan2 θ = sec4 θ – sec2 θ
L.H.S = tan4 θ + tan2 θ
Taking out tan2 θ as common
= tan2 θ (tan2 θ + 1)
We know that
1 + tan2 θ = sec2 θ
i.e. tan2 θ = sec2 θ - 1
It can be written as
= (sec2 θ – 1) sec2 θ
So we get
= sec4 θ – sec2 θ
= R.H.S
Therefore, it is proved.
APPEARS IN
संबंधित प्रश्न
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`sqrt((1+sinA)/(1-sinA)) = secA + tanA`
Prove the following trigonometric identities.
if cos A + cos2 A = 1, prove that sin2 A + sin4 A = 1
Prove the following identities:
`cosecA + cotA = 1/(cosecA - cotA)`
Prove the following identities:
`1/(1 - sinA) + 1/(1 + sinA) = 2sec^2A`
`1/((1+tan^2 theta)) + 1/((1+ tan^2 theta))`
`(sin theta)/((sec theta + tan theta -1)) + cos theta/((cosec theta + cot theta -1))=1`
Without using trigonometric table , evaluate :
`cosec49°cos41° + (tan31°)/(cot59°)`
Evaluate:
`(tan 65^circ)/(cot 25^circ)`
Prove that cot2θ – tan2θ = cosec2θ – sec2θ
Prove that
sin2A . tan A + cos2A . cot A + 2 sin A . cos A = tan A + cot A