Advertisements
Advertisements
प्रश्न
Prove the following identities:
`cosecA + cotA = 1/(cosecA - cotA)`
उत्तर
L.H.S. = `cosecA + cotA`
= `(cosecA + cotA)/1 xx (cosecA - cotA)/(cosecA - cotA)`
= `(cosec^2A - cot^2A)/(cosecA - cotA)`
= `(1 + cot^2A - cot^2A)/(cosecA - cotA)`
= `1/(cosecA - cotA)` = R.H.S.
APPEARS IN
संबंधित प्रश्न
If (secA + tanA)(secB + tanB)(secC + tanC) = (secA – tanA)(secB – tanB)(secC – tanC) prove that each of the side is equal to ±1. We have,
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(tan theta)/(1-cot theta) + (cot theta)/(1-tan theta) = 1+secthetacosectheta`
[Hint: Write the expression in terms of sinθ and cosθ]
Prove the following trigonometric identities.
`[tan θ + 1/cos θ]^2 + [tan θ - 1/cos θ]^2 = 2((1 + sin^2 θ)/(1 - sin^2 θ))`
Prove the following trigonometric identities.
`(cot^2 A(sec A - 1))/(1 + sin A) = sec^2 A ((1 - sin A)/(1 + sec A))`
Prove the following identities:
`(cosecA)/(cosecA - 1) + (cosecA)/(cosecA + 1) = 2sec^2A`
Prove that:
`(cos^3A + sin^3A)/(cosA + sinA) + (cos^3A - sin^3A)/(cosA - sinA) = 2`
The value of sin2 29° + sin2 61° is
Prove the following identity :
`(sinA - sinB)/(cosA + cosB) + (cosA - cosB)/(sinA + sinB) = 0`
If x = a sec θ + b tan θ and y = a tan θ + b sec θ prove that x2 - y2 = a2 - b2.
Show that tan 7° × tan 23° × tan 60° × tan 67° × tan 83° = `sqrt(3)`