Advertisements
Advertisements
प्रश्न
Prove the following identities:
`cosecA + cotA = 1/(cosecA - cotA)`
उत्तर
L.H.S. = `cosecA + cotA`
= `(cosecA + cotA)/1 xx (cosecA - cotA)/(cosecA - cotA)`
= `(cosec^2A - cot^2A)/(cosecA - cotA)`
= `(1 + cot^2A - cot^2A)/(cosecA - cotA)`
= `1/(cosecA - cotA)` = R.H.S.
APPEARS IN
संबंधित प्रश्न
`"If "\frac{\cos \alpha }{\cos \beta }=m\text{ and }\frac{\cos \alpha }{\sin \beta }=n " show that " (m^2 + n^2 ) cos^2 β = n^2`
if `cos theta = 5/13` where `theta` is an acute angle. Find the value of `sin theta`
`Prove the following trigonometric identities.
`(sec A - tan A)^2 = (1 - sin A)/(1 + sin A)`
Prove the following identities:
`cosA/(1 - sinA) = sec A + tan A`
Write the value of ` sec^2 theta ( 1+ sintheta )(1- sintheta).`
If `sin theta = 1/2 , " write the value of" ( 3 cot^2 theta + 3).`
Prove that `(tan^2 theta - 1)/(tan^2 theta + 1)` = 1 – 2 cos2θ
Choose the correct alternative:
sec 60° = ?
If tan θ + cot θ = 2, then tan2θ + cot2θ = ?
Prove the following:
`sintheta/(1 + cos theta) + (1 + cos theta)/sintheta` = 2cosecθ