Advertisements
Advertisements
Question
Prove the following identities:
`cosecA + cotA = 1/(cosecA - cotA)`
Solution
L.H.S. = `cosecA + cotA`
= `(cosecA + cotA)/1 xx (cosecA - cotA)/(cosecA - cotA)`
= `(cosec^2A - cot^2A)/(cosecA - cotA)`
= `(1 + cot^2A - cot^2A)/(cosecA - cotA)`
= `1/(cosecA - cotA)` = R.H.S.
APPEARS IN
RELATED QUESTIONS
The angles of depression of two ships A and B as observed from the top of a light house 60 m high are 60° and 45° respectively. If the two ships are on the opposite sides of the light house, find the distance between the two ships. Give your answer correct to the nearest whole number.
Prove the following trigonometric identities.
`sqrt((1 - cos theta)/(1 + cos theta)) = cosec theta - cot theta`
Prove the following trigonometric identities.
(1 + cot A − cosec A) (1 + tan A + sec A) = 2
`cosec theta (1+costheta)(cosectheta - cot theta )=1`
`tan theta/(1+ tan^2 theta)^2 + cottheta/(1+ cot^2 theta)^2 = sin theta cos theta`
Prove that `( sintheta - 2 sin ^3 theta ) = ( 2 cos ^3 theta - cos theta) tan theta`
From the figure find the value of sinθ.
Without using trigonometric table , evaluate :
`sin72^circ/cos18^circ - sec32^circ/(cosec58^circ)`
If cos A = `(2sqrt("m"))/("m" + 1)`, then prove that cosec A = `("m" + 1)/("m" - 1)`
If sinθ = `11/61`, then find the value of cosθ using the trigonometric identity.