Advertisements
Advertisements
Question
If cos A = `(2sqrt("m"))/("m" + 1)`, then prove that cosec A = `("m" + 1)/("m" - 1)`
Solution
cos A = `(2sqrt("m"))/("m" + 1)` ......[Given]
We know that,
sin2A + cos2A = 1
∴ `sin^2"A" + ((2sqrt("m"))/("m" + 1))^2` = 1
∴ `sin^2"A" + (4"m")/("m" + 1)^2` = 1
∴ sin2A = `1 - (4"m")/("m" + 1)^2`
= `(("m" + 1)^2 - 4"m")/("m" + 1)^2`
= `("m"^2 + 2"m" + 1 - 4"m")/("m" + 1)^2` ......[∵ (a + b)2 = a2 + 2ab + b2]
= `("m"^2 - 2"m" + 1)/("m" + 1)^2`
∴ sin2A = `("m" - 1)^2/("m" + 1)^2` ......[∵ a2 – 2ab + b2 = (a – b)2]
∴ sin A = `("m" - 1)/("m" + 1)` .....[Taking square root of both sides]
Now, cosec A = `1/"sin A"`
= `1/(("m" - 1)/("m" + 1))`
∴ cosec A = `("m" + 1)/("m" - 1)`
APPEARS IN
RELATED QUESTIONS
Express the ratios cos A, tan A and sec A in terms of sin A.
Evaluate
`(sin ^2 63^@ + sin^2 27^@)/(cos^2 17^@+cos^2 73^@)`
Prove the following trigonometric identities.
`(1 + cot A + tan A)(sin A - cos A) = sec A/(cosec^2 A) - (cosec A)/sec^2 A = sin A tan A - cos A cot A`
Prove the following identities:
`1/(secA + tanA) = secA - tanA`
Prove the following identities:
`tan^2A - tan^2B = (sin^2A - sin^2B)/(cos^2A * cos^2B)`
Prove that:
`(sinA - sinB)/(cosA + cosB) + (cosA - cosB)/(sinA + sinB) = 0`
If x = a cos θ and y = b cot θ, show that:
`a^2/x^2 - b^2/y^2 = 1`
If cosec θ − cot θ = α, write the value of cosec θ + cot α.
Prove the following identity :
`(1 + cosA)/(1 - cosA) = tan^2A/(secA - 1)^2`
Prove the following identity :
`sqrt(cosec^2q - 1) = "cosq cosecq"`
Prove the following identity :
`tan^2θ/(tan^2θ - 1) + (cosec^2θ)/(sec^2θ - cosec^2θ) = 1/(sin^2θ - cos^2θ)`
If x = acosθ , y = bcotθ , prove that `a^2/x^2 - b^2/y^2 = 1.`
Prove that :(sinθ+cosecθ)2+(cosθ+ secθ)2 = 7 + tan2 θ+cot2 θ.
Prove that `(cot "A" + "cosec A" - 1)/(cot "A" - "cosec A" + 1) = (1 + cos "A")/sin "A"`
If sin θ (1 + sin2 θ) = cos2 θ, then prove that cos6 θ – 4 cos4 θ + 8 cos2 θ = 4
If cos A + cos2A = 1, then sin2A + sin4 A = ?
If cosA + cos2A = 1, then sin2A + sin4A = 1.
(tan θ + 2)(2 tan θ + 1) = 5 tan θ + sec2θ.
If tan θ + sec θ = l, then prove that sec θ = `(l^2 + 1)/(2l)`.
If sin A = `1/2`, then the value of sec A is ______.