English

Prove that :(Sinθ+Cosecθ)2+(Cosθ+ Secθ)2 = 7 + Tan2 θ+Cot2 θ. - Mathematics

Advertisements
Advertisements

Question

Prove that :(sinθ+cosecθ)2+(cosθ+ secθ)2 = 7 + tan2 θ+cotθ.

Sum

Solution

L.H.S : (sinθ+cosecθ)2 +(cosθ+secθ)2
=sin2θ + cosec2θ + 2 +cos2θ + sec2θ + 2  `[because sin θ = 1/(cosecθ) " and cos "θ = 1/ (secθ)]`

= sin2θ + cos2θ+1+cot2θ+1+tan2θ+4    `[because cosec^2θ+1+cot^2θ" and "sec^2 θ =1+ tan^2θ]`

=sin2θ+cos2θ+1+cot2θ+1+tan2θ+4    `[because cosec^2θ+1+cot^2θ " and" sec^2 θ=1 +tan^2θ]`

=1+1+1+4+tan2θ+cot2θ       `[because cos^2θ+ sin^2θ=1]`

=7+ tan2θ+cot2θ 
L.H.S-R.H.S

shaalaa.com
  Is there an error in this question or solution?
2018-2019 (March) 30/1/1

RELATED QUESTIONS

Prove the following identities:

`( i)sin^{2}A/cos^{2}A+\cos^{2}A/sin^{2}A=\frac{1}{sin^{2}Acos^{2}A)-2`

`(ii)\frac{cosA}{1tanA}+\sin^{2}A/(sinAcosA)=\sin A\text{}+\cos A`

`( iii)((1+sin\theta )^{2}+(1sin\theta)^{2})/cos^{2}\theta =2( \frac{1+sin^{2}\theta}{1-sin^{2}\theta } )`


If (secA + tanA)(secB + tanB)(secC + tanC) = (secA – tanA)(secB – tanB)(secC – tanC) prove that each of the side is equal to ±1. We have,


If tanθ + sinθ = m and tanθ – sinθ = n, show that `m^2 – n^2 = 4\sqrt{mn}.`


Prove the following trigonometric identities.

`sqrt((1 - cos A)/(1 + cos A)) = cosec A - cot A`


Prove the following trigonometric identities.

`(1 + tan^2 A) + (1 + 1/tan^2 A) = 1/(sin^2 A - sin^4 A)`


Prove the following trigonometric identities.

if cos A + cos2 A = 1, prove that sin2 A + sin4 A = 1


`(1+ cos theta + sin theta)/( 1+ cos theta - sin theta )= (1+ sin theta )/(cos theta)`


If 3 `cot theta = 4 , "write the value of" ((2 cos theta - sin theta))/(( 4 cos theta - sin theta))`


If \[sec\theta + tan\theta = x\] then \[tan\theta =\] 


Prove that:

tan (55° + x) = cot (35° – x)


Prove that (sin θ + cosec θ)2 + (cos θ + sec θ)2 = 7 + tanθ + cotθ. 


If A + B = 90°, show that `(sin B + cos A)/sin A = 2tan B + tan A.`


Prove that identity:
`(sec A - 1)/(sec A + 1) = (1 - cos A)/(1 + cos A)`


Prove that: `(1 + cot^2 θ/(1 + cosec θ)) = cosec θ`.


If cot θ + tan θ = x and sec θ – cos θ = y, then prove that `(x^2y)^(2/3) – (xy^2)^(2/3)` = 1


Prove that cot2θ × sec2θ = cot2θ + 1


sin4A – cos4A = 1 – 2cos2A. For proof of this complete the activity given below.

Activity:

L.H.S = `square`

 = (sin2A + cos2A) `(square)`

= `1 (square)`       .....`[sin^2"A" + square = 1]`

= `square` – cos2A    .....[sin2A = 1 – cos2A]

= `square`

= R.H.S


Prove that

sec2A – cosec2A = `(2sin^2"A" - 1)/(sin^2"A"*cos^2"A")`


Prove that 2(sin6A + cos6A) – 3(sin4A + cos4A) + 1 = 0


If cos A + cos2A = 1, then sin2A + sin4 A = ?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×