Advertisements
Advertisements
Question
Prove that:
tan (55° + x) = cot (35° – x)
Solution
tan (55° + x) = tan [90° – (35° – x)] = cot (35° – x)
APPEARS IN
RELATED QUESTIONS
Evaluate sin25° cos65° + cos25° sin65°
Without using trigonometric tables evaluate
`(sin 35^@ cos 55^@ + cos 35^@ sin 55^@)/(cosec^2 10^@ - tan^2 80^@)`
Prove the following identities:
`tan^2A - tan^2B = (sin^2A - sin^2B)/(cos^2A * cos^2B)`
(i)` (1-cos^2 theta )cosec^2theta = 1`
2 (sin6 θ + cos6 θ) − 3 (sin4 θ + cos4 θ) is equal to
Prove the following identity :
`sin^4A + cos^4A = 1 - 2sin^2Acos^2A`
Prove the following identity :
`(1 + cotA)^2 + (1 - cotA)^2 = 2cosec^2A`
Prove the following identity :
`(tanθ + sinθ)/(tanθ - sinθ) = (secθ + 1)/(secθ - 1)`
Find the value of `θ(0^circ < θ < 90^circ)` if :
`tan35^circ cot(90^circ - θ) = 1`
tan2θ – sin2θ = tan2θ × sin2θ. For proof of this complete the activity given below.
Activity:
L.H.S = `square`
= `square (1 - (sin^2theta)/(tan^2theta))`
= `tan^2theta (1 - square/((sin^2theta)/(cos^2theta)))`
= `tan^2theta (1 - (sin^2theta)/1 xx (cos^2theta)/square)`
= `tan^2theta (1 - square)`
= `tan^2theta xx square` .....[1 – cos2θ = sin2θ]
= R.H.S