Advertisements
Advertisements
Question
Find the value of `θ(0^circ < θ < 90^circ)` if :
`tan35^circ cot(90^circ - θ) = 1`
Solution
`tan35^circ cot(90^circ - θ) = 1`
Given `tan35^circ cot(90^circ - θ) = 1`
⇒ `tan35^circtanθ = 1`
⇒ `tan35^circ = cotθ`
⇒ `tan35^circ = tan(90^circ - θ)`
⇒ `90^circ - θ = 35^circ`
⇒ `θ = 55^circ`
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
`tan theta/(1 - cot theta) + cot theta/(1 - tan theta) = 1 + tan theta + cot theta`
Prove the following trigonometric identities.
`sqrt((1 - cos A)/(1 + cos A)) = cosec A - cot A`
Prove the following identities:
`(1 + sinA)/cosA + cosA/(1 + sinA) = 2secA`
Prove that:
`1/(cosA + sinA - 1) + 1/(cosA + sinA + 1) = cosecA + secA`
`cot theta/((cosec theta + 1) )+ ((cosec theta +1 ))/ cot theta = 2 sec theta `
Write the value of tan1° tan 2° ........ tan 89° .
\[\frac{1 + \tan^2 A}{1 + \cot^2 A}\]is equal to
Prove the following identity :
`1/(cosA + sinA - 1) + 2/(cosA + sinA + 1) = cosecA + secA`
Prove that `(tan^2 theta - 1)/(tan^2 theta + 1)` = 1 – 2 cos2θ
If tan α + cot α = 2, then tan20α + cot20α = ______.