Advertisements
Advertisements
Question
(i)` (1-cos^2 theta )cosec^2theta = 1`
Solution
LHS= `(1-cos^2 theta) cosec^2 theta`
=`sin ^2 theta cosec^2 theta (∵ cos^2 theta + sin^2 theta =1)`
=`1/(cosec^2theta) ×cosec^2theta`
=1
Hence, LHS = RHS
APPEARS IN
RELATED QUESTIONS
If sinθ + sin2 θ = 1, prove that cos2 θ + cos4 θ = 1
Prove the following trigonometric identities.
`cot theta - tan theta = (2 cos^2 theta - 1)/(sin theta cos theta)`
Prove the following trigonometric identities.
`1/(1 + sin A) + 1/(1 - sin A) = 2sec^2 A`
Prove the following identities:
`secA/(secA + 1) + secA/(secA - 1) = 2cosec^2A`
If x = r cos A cos B, y = r cos A sin B and z = r sin A, show that : x2 + y2 + z2 = r2
`tan theta/(1+ tan^2 theta)^2 + cottheta/(1+ cot^2 theta)^2 = sin theta cos theta`
Show that none of the following is an identity:
(i) `cos^2theta + cos theta =1`
Write the value of tan1° tan 2° ........ tan 89° .
Prove that:
`(sin^2θ)/(cosθ) + cosθ = secθ`
Four alternative answers for the following question are given. Choose the correct alternative and write its alphabet:
sin θ × cosec θ = ______
What is the value of \[6 \tan^2 \theta - \frac{6}{\cos^2 \theta}\]
Prove the following identity :
`cosA/(1 - tanA) + sinA/(1 - cotA) = sinA + cosA`
For ΔABC , prove that :
`tan ((B + C)/2) = cot "A/2`
Prove that `tan A/(1 + tan^2 A)^2 + cot A/(1 + cot^2 A)^2 = sin A.cos A`
tan θ cosec2 θ – tan θ is equal to
Prove that sin θ (1 – tan θ) – cos θ (1 – cot θ) = cosec θ – sec θ
Show that tan 7° × tan 23° × tan 60° × tan 67° × tan 83° = `sqrt(3)`
Show that tan4θ + tan2θ = sec4θ – sec2θ.
If 2 cos θ + sin θ = `1(θ ≠ π/2)`, then 7 cos θ + 6 sin θ is equal to ______.
sec θ when expressed in term of cot θ, is equal to ______.