Advertisements
Advertisements
Question
Prove the following identity :
`cosA/(1 - tanA) + sinA/(1 - cotA) = sinA + cosA`
Solution
LHS = `cosA/(1 - tanA) + sinA/(1 - cotA)`
= `cosA/(1-sinA/cosA) + sinA/(1 - cosA/sinA) = cosA/((cosA -sinA)/cosA) + sinA/((sinA - cosA)/sinA)`
= `cos^2A/(cosA - sinA) + sin^2A/(sinA - cosA) = (cos^2A - sin^2A)/((cosA - sinA))`
`((cosA - sinA)(cosA + sinA))/(cosA - sinA)`
= sinA + cosA = RHS
APPEARS IN
RELATED QUESTIONS
`sin theta / ((1+costheta))+((1+costheta))/sin theta=2cosectheta`
`sin theta/((cot theta + cosec theta)) - sin theta /( (cot theta - cosec theta)) =2`
Prove that:
`"tan A"/(1 + "tan"^2 "A")^2 + "Cot A"/(1 + "Cot"^2 "A")^2 = "sin A cos A"`.
If tanθ `= 3/4` then find the value of secθ.
If cosec θ = 2x and \[5\left( x^2 - \frac{1}{x^2} \right)\] \[2\left( x^2 - \frac{1}{x^2} \right)\]
Prove that `tan A/(1 + tan^2 A)^2 + cot A/(1 + cot^2 A)^2 = sin A.cos A`
Prove that `(1 + sintheta)/(1 - sin theta)` = (sec θ + tan θ)2
Prove that (1 – cos2A) . sec2B + tan2B(1 – sin2A) = sin2A + tan2B
sin(45° + θ) – cos(45° – θ) is equal to ______.
Let x1, x2, x3 be the solutions of `tan^-1((2x + 1)/(x + 1)) + tan^-1((2x - 1)/(x - 1))` = 2tan–1(x + 1) where x1 < x2 < x3 then 2x1 + x2 + x32 is equal to ______.