Advertisements
Advertisements
Question
Prove the following identity :
`(cosecA - sinA)(secA - cosA) = 1/(tanA + cotA)`
Solution
LHS = `(cosecA - sinA)(secA - cosA)`
= `(1/sinA - sinA)(1/cosA - cosA)`
= `((1-sin^2A)/(sinA))((1 - cos^2A)/cosA)`
= `(cos^2A/sinA)(sin^2A/cosA)` = cosA.sinA
RHS = `1/(tanA + cotA)`
= `1/(sinA/cosA + cosA/sinA) = 1/((sin^2A + cos^2A)/(sinA.cosA))` = cosA.sinA
Hence , LHS = RHS
APPEARS IN
RELATED QUESTIONS
If sinθ + sin2 θ = 1, prove that cos2 θ + cos4 θ = 1
Prove the following trigonometric identities.
`(1/(sec^2 theta - cos theta) + 1/(cosec^2 theta - sin^2 theta)) sin^2 theta cos^2 theta = (1 - sin^2 theta cos^2 theta)/(2 + sin^2 theta + cos^2 theta)`
Prove the following identities:
`(1 + sinA)/cosA + cosA/(1 + sinA) = 2secA`
Prove that:
`(sinA - cosA)(1 + tanA + cotA) = secA/(cosec^2A) - (cosecA)/(sec^2A)`
`cot theta/((cosec theta + 1) )+ ((cosec theta +1 ))/ cot theta = 2 sec theta `
`(1+ tan theta + cot theta )(sintheta - cos theta) = ((sec theta)/ (cosec^2 theta)-( cosec theta)/(sec^2 theta))`
If a cos θ + b sin θ = 4 and a sin θ − b sin θ = 3, then a2 + b2 =
Prove the following identity :
`tan^2θ/(tan^2θ - 1) + (cosec^2θ)/(sec^2θ - cosec^2θ) = 1/(sin^2θ - cos^2θ)`
Without using the trigonometric table, prove that
cos 1°cos 2°cos 3° ....cos 180° = 0.
Prove the following:
`1 + (cot^2 alpha)/(1 + "cosec" alpha)` = cosec α