English

Prove the Following Identity : Tan 2 θ Tan 2 θ − 1 + Cos E C 2 θ Sec 2 θ − Cos E C 2 θ = 1 Sin 2 θ − Cos 2 θ - Mathematics

Advertisements
Advertisements

Question

Prove the following identity :

`tan^2θ/(tan^2θ - 1) + (cosec^2θ)/(sec^2θ - cosec^2θ) = 1/(sin^2θ - cos^2θ)`

Sum

Solution

LHS = `tan^2θ/(tan^2θ - 1) + (cosec^2θ)/(sec^2θ - cosec^2θ)`

 = `(sin^2θ/cos^2θ)/(sin^2θ/cos^2θ - 1) + (1/sin^2θ)/(1/(cos^2θ) - 1/sin^2θ)`

= `sin^2θ/(sin^2θ - cos^2θ) + (1/sin^2θ)/((sin^2θ - cos^2θ)/(cos^2θ sin^2θ))`

= `sin^2θ/(sin^2θ - cos^2θ) + cos^2θ/(sin^2θ - cos^2θ)` 

= `(sin^2θ + cos^2θ)/(sin^2θ - cos^2θ) = 1/(sin^2θ - cos^2θ)`    (∵`sin^2θ + cos^2θ = 1`)

shaalaa.com

Notes

θ

  Is there an error in this question or solution?
Chapter 21: Trigonometric Identities - Exercise 21.1

APPEARS IN

Frank Mathematics - Part 2 [English] Class 10 ICSE
Chapter 21 Trigonometric Identities
Exercise 21.1 | Q 6.09
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×