Advertisements
Advertisements
Question
Prove the following identities:
`tan A - cot A = (1 - 2cos^2A)/(sin A cos A)`
Solution
L.H.S. = tan A – cot A
= `(sin A)/(cos A) - (cos A)/(sin A)`
= `(sin^2A - cos^2A)/(sin A cos A)`
= `(1 - cos^2A - cos^2A)/(sin A cos A)` ...(∵ sin2A = 1 – cos2A)
= `(1 - 2cos^2A)/(sin A cos A)`
= R.H.S.
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
`cot theta - tan theta = (2 cos^2 theta - 1)/(sin theta cos theta)`
Prove the following trigonometric identities.
`sin A/(sec A + tan A - 1) + cos A/(cosec A + cot A + 1) = 1`
If sec A + tan A = p, show that:
`sin A = (p^2 - 1)/(p^2 + 1)`
Prove that:
`cosA/(1 + sinA) = secA - tanA`
Write the value of `cosec^2 theta (1+ cos theta ) (1- cos theta).`
If sin θ − cos θ = 0 then the value of sin4θ + cos4θ
Prove the following identity :
`(1 + sinA)/(1 - sinA) = (cosecA + 1)/(cosecA - 1)`
Prove the following identity :
`(cos^3A + sin^3A)/(cosA + sinA) + (cos^3A - sin^3A)/(cosA - sinA) = 2`
Choose the correct alternative:
cot θ . tan θ = ?
If sin A = `1/2`, then the value of sec A is ______.