Advertisements
Advertisements
Question
Prove the following identities:
`1/(tan A + cot A) = cos A sin A`
Solution
L.H.S. = `1/(tan A + cot A)`
= `1/((sin A)/(cos A) + (cos A)/(sin A))`
= `1/((sin^2A + cos^2A)/(sin A cos A))`
= `1/(1/(sin A cos A))` ...(∵ sin2A + cos2A = 1)
= sin A cos A
= R.H.S.
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities
tan2 A + cot2 A = sec2 A cosec2 A − 2
Prove the following identities:
`((cosecA - cotA)^2 + 1)/(secA(cosecA - cotA)) = 2cotA`
`(cot ^theta)/((cosec theta+1)) + ((cosec theta + 1))/cot theta = 2 sec theta`
If `cos B = 3/5 and (A + B) =- 90° ,`find the value of sin A.
If 5x = sec θ and \[\frac{5}{x} = \tan \theta\]find the value of \[5\left( x^2 - \frac{1}{x^2} \right)\]
Prove that sin θ sin( 90° - θ) - cos θ cos( 90° - θ) = 0
Prove the following identities:
`(1 - tan^2 θ)/(cot^2 θ - 1) = tan^2 θ`.
Prove that: `(sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A) = 2/(sin^2 A - cos^2 A)`.
Choose the correct alternative:
1 + cot2θ = ?
(sec θ + tan θ) . (sec θ – tan θ) = ?