Advertisements
Advertisements
Question
Prove that: `(sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A) = 2/(sin^2 A - cos^2 A)`.
Solution
LHS = `(sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A)`
= `((sin A + cos A)^2 + (sin A - cos A)^2)/((sin A - cos A)(sin A + cos A))`
= `(sin^2 A + cos^2 A + 2 sin A cos A + sin^2 A + cos^2 A - 2sin A. cos A)/(sin^2 A - cos^2 A)`
= `2(sin^2 A + cos^2 A)/(sin^A - cos^2 A)`
= `2/(sin^2 A - cos^2 A)`
= RHS
Hence proved.
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
(sec A − cosec A) (1 + tan A + cot A) = tan A sec A − cot A cosec A
Prove the following identities:
(sin A + cosec A)2 + (cos A + sec A)2 = 7 + tan2 A + cot2 A
Show that : `sinA/sin(90^circ - A) + cosA/cos(90^circ - A) = sec A cosec A`
`(1+ cos theta)(1- costheta )(1+cos^2 theta)=1`
Simplify : 2 sin30 + 3 tan45.
If sec θ + tan θ = x, then sec θ =
Find the value of `θ(0^circ < θ < 90^circ)` if :
`cos 63^circ sec(90^circ - θ) = 1`
If cos θ = `24/25`, then sin θ = ?
If 3 sin θ = 4 cos θ, then sec θ = ?
If sec θ = `41/40`, then find values of sin θ, cot θ, cosec θ