English

Prove That: (Sin a + Cos A)/(Sin a - Cos A) + (Sin a - Cos A)/(Sin a + Cos A) = 2/(Sin^2 a - Cos^2 A) - Mathematics

Advertisements
Advertisements

Question

Prove that: `(sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A) = 2/(sin^2 A - cos^2 A)`.

Sum

Solution

LHS = `(sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A)`

= `((sin A + cos A)^2 + (sin A - cos A)^2)/((sin A - cos A)(sin A + cos A))`

= `(sin^2 A + cos^2 A + 2 sin A cos A + sin^2 A + cos^2 A - 2sin A. cos A)/(sin^2 A - cos^2 A)`

= `2(sin^2 A + cos^2 A)/(sin^A - cos^2 A)`

= `2/(sin^2 A - cos^2 A)`

= RHS

Hence proved.

shaalaa.com
  Is there an error in this question or solution?
Chapter 18: Trigonometry - Exercise 2

APPEARS IN

ICSE Mathematics [English] Class 10
Chapter 18 Trigonometry
Exercise 2 | Q 64.2
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×