Advertisements
Advertisements
Question
Prove the following identities:
`(1 + sin A)/(1 - sin A) = (cosec A + 1)/(cosec A - 1)`
Solution
R.H.S = `(1/(sin A) + 1)/(1/(sin A) - 1)`
= `((1 + sin A)/sin A)/((1 - sin A)/sin A)`
= `((1 + sin A))/cancelsin A xx cancelsin A/((1 - sin A))`
= `(1 + sin A)/(1 - sin A)`
∴ R.H.S = L.H.S
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
`sin theta/(1 - cos theta) = cosec theta + cot theta`
Prove the following trigonometric identities
sec4 A(1 − sin4 A) − 2 tan2 A = 1
Prove that:
`(sinA - cosA)(1 + tanA + cotA) = secA/(cosec^2A) - (cosecA)/(sec^2A)`
Write the value of `( 1- sin ^2 theta ) sec^2 theta.`
Prove the following identity :
`(1 - cos^2θ)sec^2θ = tan^2θ`
Prove the following identity :
`sqrt((secq - 1)/(secq + 1)) + sqrt((secq + 1)/(secq - 1))` = 2 cosesq
Prove the following identity :
`(1 + cotA)^2 + (1 - cotA)^2 = 2cosec^2A`
If m = a secA + b tanA and n = a tanA + b secA , prove that m2 - n2 = a2 - b2
If A = 30°, verify that `sin 2A = (2 tan A)/(1 + tan^2 A)`.
If 2 cos θ + sin θ = `1(θ ≠ π/2)`, then 7 cos θ + 6 sin θ is equal to ______.