Advertisements
Advertisements
Question
Prove the following trigonometric identities.
`sin theta/(1 - cos theta) = cosec theta + cot theta`
Solution
We have to prove `sin theta/(1 - cos theta) = cosec theta + cot theta`
We know that `sin^2 theta = cos^2 theta = 1`
`sin theta/(1 - cos theta) = (sin theta (1 + cos theta))/(1 - cos^2 theta)`
`= (sin theta (1 + cos theta))/(1 - cos^2 theta)``
`= (sin theta (1 + cos theta))/(sin^2 theta)`
`= (1 + cos theta)/sin theta`
`= 1/sin theta + cos theta/sin theta`
`= cosec theta + cot theta`
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
tan2θ cos2θ = 1 − cos2θ
Prove the following trigonometric identities.
`cot theta - tan theta = (2 cos^2 theta - 1)/(sin theta cos theta)`
Prove the following identities:
`1/(tan A + cot A) = cos A sin A`
Prove that:
`(tanA + 1/cosA)^2 + (tanA - 1/cosA)^2 = 2((1 + sin^2A)/(1 - sin^2A))`
Prove that:
2 sin2 A + cos4 A = 1 + sin4 A
If x cos A + y sin A = m and x sin A – y cos A = n, then prove that : x2 + y2 = m2 + n2
If sin A + cos A = m and sec A + cosec A = n, show that : n (m2 – 1) = 2 m
Prove the following identities:
`cosecA - cotA = sinA/(1 + cosA)`
`(tan A + tanB )/(cot A + cot B) = tan A tan B`
If `sin theta = 1/2 , " write the value of" ( 3 cot^2 theta + 3).`
If `tan theta = 1/sqrt(5), "write the value of" (( cosec^2 theta - sec^2 theta))/(( cosec^2 theta - sec^2 theta))`
If `sin theta = x , " write the value of cot "theta .`
If 5x = sec θ and \[\frac{5}{x} = \tan \theta\]find the value of \[5\left( x^2 - \frac{1}{x^2} \right)\]
If a cos θ + b sin θ = m and a sin θ − b cos θ = n, then a2 + b2 =
Prove the following identity :
`(1 - cos^2θ)sec^2θ = tan^2θ`
Prove the following identity :
`(1 - tanA)^2 + (1 + tanA)^2 = 2sec^2A`
Prove the following identity :
`(sinA - sinB)/(cosA + cosB) + (cosA - cosB)/(sinA + sinB) = 0`
Without using trigonometric table , evaluate :
`sin72^circ/cos18^circ - sec32^circ/(cosec58^circ)`
If x = a tan θ and y = b sec θ then
`sqrt((1 - cos^2theta) sec^2 theta) = tan theta`