English

Prove the Following Trigonometric Identities. Sin Theta/(1 - Cos Theta) = Cosec Theta + Cot Theta - Mathematics

Advertisements
Advertisements

Question

Prove the following trigonometric identities.

`sin theta/(1 - cos theta) =  cosec theta + cot theta`

Solution

We have to prove  `sin theta/(1 - cos theta) = cosec theta + cot theta`

We know that `sin^2 theta = cos^2 theta = 1`

`sin theta/(1 - cos theta) = (sin theta (1 + cos theta))/(1 - cos^2 theta)`

`= (sin theta (1 +  cos theta))/(1 -  cos^2 theta)``

`= (sin theta (1 + cos theta))/(sin^2 theta)`

`= (1 + cos theta)/sin theta`

`= 1/sin theta + cos theta/sin theta`

`= cosec theta  + cot theta`

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Trigonometric Identities - Exercise 11.1 [Page 44]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 11 Trigonometric Identities
Exercise 11.1 | Q 13 | Page 44

RELATED QUESTIONS

Prove the following trigonometric identities.

tan2θ cos2θ = 1 − cos2θ


Prove the following trigonometric identities.

`cot theta - tan theta = (2 cos^2 theta - 1)/(sin theta cos theta)`


Prove the following identities:

`1/(tan A + cot A) = cos A sin A`


Prove that:

`(tanA + 1/cosA)^2 + (tanA - 1/cosA)^2 = 2((1 + sin^2A)/(1 - sin^2A))`


Prove that:

2 sin2 A + cos4 A = 1 + sin4


If x cos A + y sin A = m and x sin A – y cos A = n, then prove that : x2 + y2 = m2 + n2


If sin A + cos A = m and sec A + cosec A = n, show that : n (m2 – 1) = 2 m


Prove the following identities:

`cosecA - cotA = sinA/(1 + cosA)`


`(tan A + tanB )/(cot A + cot B) = tan A tan B`


If  `sin theta = 1/2 , " write the value of" ( 3 cot^2 theta + 3).`


If `tan theta = 1/sqrt(5), "write the value of" (( cosec^2 theta - sec^2 theta))/(( cosec^2 theta - sec^2 theta))`


If `sin theta = x , " write the value of cot "theta .`


If 5x = sec θ and \[\frac{5}{x} = \tan \theta\]find the value of \[5\left( x^2 - \frac{1}{x^2} \right)\] 


If a cos θ + b sin θ = m and a sin θ − b cos θ = n, then a2 + b2 =


Prove the following identity :

`(1 - cos^2θ)sec^2θ = tan^2θ`


Prove the following identity :

`(1 - tanA)^2 + (1 + tanA)^2 = 2sec^2A`


Prove the following identity : 

`(sinA - sinB)/(cosA + cosB) + (cosA - cosB)/(sinA + sinB) = 0`


Without using trigonometric table , evaluate : 

`sin72^circ/cos18^circ  - sec32^circ/(cosec58^circ)`


If x = a tan θ and y = b sec θ then


`sqrt((1 - cos^2theta) sec^2 theta) = tan theta` 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×