Advertisements
Advertisements
Question
Prove the following identity :
`(1 - tanA)^2 + (1 + tanA)^2 = 2sec^2A`
Solution
LHS = `(1 - tanA)^2 + (1 + tanA)^2`
= `1 + tan^2A - 2tanA + 1 + tan^2A + 2tanA`
= `2(1 + tan^2A) = 2sec^2A` = RHS
APPEARS IN
RELATED QUESTIONS
Prove that (cosec A – sin A)(sec A – cos A) sec2 A = tan A.
Write the value of `cosec^2 theta (1+ cos theta ) (1- cos theta).`
If sin2 θ cos2 θ (1 + tan2 θ) (1 + cot2 θ) = λ, then find the value of λ.
Prove that `( tan A + sec A - 1)/(tan A - sec A + 1) = (1 + sin A)/cos A`.
Prove that `(tan θ + sin θ)/(tan θ - sin θ) = (sec θ + 1)/(sec θ - 1)`
Choose the correct alternative:
cot θ . tan θ = ?
Prove that `(cos^2theta)/(sintheta) + sintheta` = cosec θ
If sec θ = `41/40`, then find values of sin θ, cot θ, cosec θ
Given that sin θ = `a/b`, then cos θ is equal to ______.
Prove that `(1 + tan^2 A)/(1 + cot^2 A)` = sec2 A – 1