Advertisements
Advertisements
Question
Prove that (cosec A – sin A)(sec A – cos A) sec2 A = tan A.
Solution
L.H.S = `(cosec A - sin A)(secA - cosA)sec^2A`
`= (1/sinA - sinA)(1/cosA - cosA)(1/cos^2A)`
`= ((1 - sin^2A)/sin A)((1- cos^2A)/cos A)(1/(cos^2A))`
`= cos^2A/sinA . sin^2A/cos A . 1/cos^2A`
`= sinA/cosA`
= tan A
= R.H.S
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
`cosec theta sqrt(1 - cos^2 theta) = 1`
Prove the following trigonometric identities.
sin2 A cot2 A + cos2 A tan2 A = 1
Prove the following trigonometric identities.
`[tan θ + 1/cos θ]^2 + [tan θ - 1/cos θ]^2 = 2((1 + sin^2 θ)/(1 - sin^2 θ))`
Prove the following identities:
`(1 - cosA)/sinA + sinA/(1 - cosA)= 2cosecA`
If x = a cos θ and y = b cot θ, show that:
`a^2/x^2 - b^2/y^2 = 1`
`cos^2 theta /((1 tan theta))+ sin ^3 theta/((sin theta - cos theta))=(1+sin theta cos theta)`
If `( tan theta + sin theta ) = m and ( tan theta - sin theta ) = n " prove that "(m^2-n^2)^2 = 16 mn .`
If `(cosec theta - sin theta )= a^3 and (sec theta - cos theta ) = b^3 , " prove that " a^2 b^2 ( a^2+ b^2 ) =1`
What is the value of (1 + cot2 θ) sin2 θ?
Prove that sec2θ + cosec2θ = sec2θ × cosec2θ