English

`Cos^2 Theta /((1 Tan Theta))+ Sin ^3 Theta/((Sin Theta - Cos Theta))=(1+Sin Theta Cos Theta)` - Mathematics

Advertisements
Advertisements

Question

`cos^2 theta /((1 tan theta))+ sin ^3 theta/((sin theta - cos theta))=(1+sin theta cos theta)`

Solution

`cos^2 theta /((1 tan theta))+ sin ^3 theta/((sin theta - cos theta))=(1+sin theta cos theta)`

LHS=`cos^2theta/((1-tan theta))+sin ^3theta/((sin theta - cos theta))`

     =`cos^2theta/(1-sintheta/costheta)+sin^3 theta/((sin theta-costheta))`

     =`cos^3 theta/((cos theta-sin theta))+ sin ^3 theta/((sintheta-cos theta))`

     =`(cos^3theta-sin^3 theta)/((costheta - sin theta))`

     =`((cos theta-sintheta)(cos^2 theta+cos theta sin +sin^2theta))/((costheta-sintheta))`

   =`(sin^2theta + cos^2 theta + cos theta sin theta)`

  =`(1+sin theta cos theta)`

   =RHS

Hence, L.H.S = R.H.S.

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Trigonometric Identities - Exercises 1

APPEARS IN

RS Aggarwal Mathematics [English] Class 10
Chapter 8 Trigonometric Identities
Exercises 1 | Q 13

RELATED QUESTIONS

Prove the following trigonometric identities.

`(1 + cos theta - sin^2 theta)/(sin theta (1 + cos theta)) = cot theta`


Prove the following trigonometric identities.

if x = a cos^3 theta, y = b sin^3 theta` " prove that " `(x/a)^(2/3) + (y/b)^(2/3) = 1`


Prove the following identities:

`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (1 + cosA)/sinA`


`(sec^2 theta-1) cot ^2 theta=1`


If `( sin theta + cos theta ) = sqrt(2) , " prove that " cot theta = ( sqrt(2)+1)`.


If `cosec  theta = 2x and cot theta = 2/x ," find the value of"  2 ( x^2 - 1/ (x^2))`


If sec2 θ (1 + sin θ) (1 − sin θ) = k, then find the value of k.


\[\frac{1 - \sin \theta}{\cos \theta}\] is equal to


Prove the following identity :

tanA+cotA=secAcosecA 


Without using trigonometric table , evaluate : 

`sin72^circ/cos18^circ  - sec32^circ/(cosec58^circ)`


Without using trigonometric identity , show that :

`sec70^circ sin20^circ - cos20^circ cosec70^circ = 0`


If sec θ + tan θ = m, show that `(m^2 - 1)/(m^2 + 1) = sin theta`


Prove that:

`(sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A) = 2/(2 sin^2 A - 1)`


If A + B = 90°, show that `(sin B + cos A)/sin A = 2tan B + tan A.`


If sin θ (1 + sin2 θ) = cos2 θ, then prove that cos6 θ – 4 cos4 θ + 8 cos2 θ = 4


Prove that sin θ (1 – tan θ) – cos θ (1 – cot θ) = cosec θ – sec θ


If sin θ + cos θ = `sqrt(3)`, then show that tan θ + cot θ = 1


If cos (α + β) = 0, then sin (α – β) can be reduced to ______.


If sin A = `1/2`, then the value of sec A is ______.


Find the value of sin2θ  + cos2θ

Solution:

In Δ ABC, ∠ABC = 90°, ∠C = θ°

AB2 + BC2 = `square`   .....(Pythagoras theorem)

Divide both sides by AC2

`"AB"^2/"AC"^2 + "BC"^2/"AC"^2 = "AC"^2/"AC"^2`

∴ `("AB"^2/"AC"^2) + ("BC"^2/"AC"^2) = 1`

But `"AB"/"AC" = square and "BC"/"AC" = square`

∴ `sin^2 theta  + cos^2 theta = square` 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×