Advertisements
Advertisements
Question
`cos^2 theta /((1 tan theta))+ sin ^3 theta/((sin theta - cos theta))=(1+sin theta cos theta)`
Solution
`cos^2 theta /((1 tan theta))+ sin ^3 theta/((sin theta - cos theta))=(1+sin theta cos theta)`
LHS=`cos^2theta/((1-tan theta))+sin ^3theta/((sin theta - cos theta))`
=`cos^2theta/(1-sintheta/costheta)+sin^3 theta/((sin theta-costheta))`
=`cos^3 theta/((cos theta-sin theta))+ sin ^3 theta/((sintheta-cos theta))`
=`(cos^3theta-sin^3 theta)/((costheta - sin theta))`
=`((cos theta-sintheta)(cos^2 theta+cos theta sin +sin^2theta))/((costheta-sintheta))`
=`(sin^2theta + cos^2 theta + cos theta sin theta)`
=`(1+sin theta cos theta)`
=RHS
Hence, L.H.S = R.H.S.
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
`(1 + cos theta - sin^2 theta)/(sin theta (1 + cos theta)) = cot theta`
Prove the following trigonometric identities.
if x = a cos^3 theta, y = b sin^3 theta` " prove that " `(x/a)^(2/3) + (y/b)^(2/3) = 1`
Prove the following identities:
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (1 + cosA)/sinA`
`(sec^2 theta-1) cot ^2 theta=1`
If `( sin theta + cos theta ) = sqrt(2) , " prove that " cot theta = ( sqrt(2)+1)`.
If `cosec theta = 2x and cot theta = 2/x ," find the value of" 2 ( x^2 - 1/ (x^2))`
If sec2 θ (1 + sin θ) (1 − sin θ) = k, then find the value of k.
\[\frac{1 - \sin \theta}{\cos \theta}\] is equal to
Prove the following identity :
tanA+cotA=secAcosecA
Without using trigonometric table , evaluate :
`sin72^circ/cos18^circ - sec32^circ/(cosec58^circ)`
Without using trigonometric identity , show that :
`sec70^circ sin20^circ - cos20^circ cosec70^circ = 0`
If sec θ + tan θ = m, show that `(m^2 - 1)/(m^2 + 1) = sin theta`
Prove that:
`(sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A) = 2/(2 sin^2 A - 1)`
If A + B = 90°, show that `(sin B + cos A)/sin A = 2tan B + tan A.`
If sin θ (1 + sin2 θ) = cos2 θ, then prove that cos6 θ – 4 cos4 θ + 8 cos2 θ = 4
Prove that sin θ (1 – tan θ) – cos θ (1 – cot θ) = cosec θ – sec θ
If sin θ + cos θ = `sqrt(3)`, then show that tan θ + cot θ = 1
If cos (α + β) = 0, then sin (α – β) can be reduced to ______.
If sin A = `1/2`, then the value of sec A is ______.
Find the value of sin2θ + cos2θ
Solution:
In Δ ABC, ∠ABC = 90°, ∠C = θ°
AB2 + BC2 = `square` .....(Pythagoras theorem)
Divide both sides by AC2
`"AB"^2/"AC"^2 + "BC"^2/"AC"^2 = "AC"^2/"AC"^2`
∴ `("AB"^2/"AC"^2) + ("BC"^2/"AC"^2) = 1`
But `"AB"/"AC" = square and "BC"/"AC" = square`
∴ `sin^2 theta + cos^2 theta = square`