English

If Sec2 θ (1 + Sin θ) (1 − Sin θ) = K, Then Find the Value of K. - Mathematics

Advertisements
Advertisements

Question

If sec2 θ (1 + sin θ) (1 − sin θ) = k, then find the value of k.

Sum

Solution

Given:

`sec^2θ {(1+sinθ) (1-sin θ)}=k` 

⇒ `sec^2θ {(1+sinθ) (1-sin θ)}=k`  

⇒` Sec^2θ {1+sinθ}=K` 

⇒ `sec^2θ  cos^2θ=k` 

⇒` 1/cos^2θ xx cos ^2 θ=k` 

⇒ `1=k`

⇒` k=1` 

Hence, the value of k is 1. 

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Trigonometric Identities - Exercise 11.3 [Page 55]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 11 Trigonometric Identities
Exercise 11.3 | Q 19 | Page 55

RELATED QUESTIONS

Prove the following trigonometric identities.

`[tan θ + 1/cos θ]^2 + [tan θ - 1/cos θ]^2 = 2((1 + sin^2 θ)/(1 - sin^2 θ))`


Prove the following trigonometric identities

If x = a sec θ + b tan θ and y = a tan θ + b sec θ, prove that x2 − y2 = a2 − b2


Prove the following identities:

`(1 - 2sin^2A)^2/(cos^4A - sin^4A) = 2cos^2A - 1`


`cos^2 theta + 1/((1+ cot^2 theta )) =1`

     


`{1/((sec^2 theta- cos^2 theta))+ 1/((cosec^2 theta - sin^2 theta))} ( sin^2 theta cos^2 theta) = (1- sin^2 theta cos ^2 theta)/(2+ sin^2 theta cos^2 theta)`


Show that none of the following is an identity:
(i) `cos^2theta + cos theta =1`


Write the value of `(sin^2 theta 1/(1+tan^2 theta))`. 


If cos  \[9\theta\] = sin \[\theta\] and  \[9\theta\]  < 900 , then the value of tan \[6 \theta\] is


If x = r sinA cosB , y = r sinA sinB and z = r cosA , prove that   `x^2 + y^2 + z^2 = r^2`


If `asin^2θ + bcos^2θ = c and p sin^2θ + qcos^2θ = r` , prove that (b - c)(r - p) = (c - a)(q - r)


Prove that `sinA/sin(90^circ - A) + cosA/cos(90^circ - A) = sec(90^circ - A) cosec(90^circ - A)`


Prove that sec θ. cosec (90° - θ) - tan θ. cot( 90° - θ ) = 1.


If A = 60°, B = 30° verify that tan( A - B) = `(tan A - tan B)/(1 + tan A. tan B)`.


Prove that sin2 5° + sin2 10° .......... + sin2 85° + sin2 90° = `9 1/2`.


If `(cos alpha)/(cos beta)` = m and `(cos alpha)/(sin beta)` = n, then prove that (m2 + n2) cos2 β = n2


If 2sin2β − cos2β = 2, then β is ______.


Simplify (1 + tan2θ)(1 – sinθ)(1 + sinθ)


Prove the following trigonometry identity:

(sinθ + cosθ)(cosecθ – secθ) = cosecθ.secθ – 2 tanθ


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×