Advertisements
Advertisements
Question
If sec2 θ (1 + sin θ) (1 − sin θ) = k, then find the value of k.
Solution
Given:
`sec^2θ {(1+sinθ) (1-sin θ)}=k`
⇒ `sec^2θ {(1+sinθ) (1-sin θ)}=k`
⇒` Sec^2θ {1+sinθ}=K`
⇒ `sec^2θ cos^2θ=k`
⇒` 1/cos^2θ xx cos ^2 θ=k`
⇒ `1=k`
⇒` k=1`
Hence, the value of k is 1.
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
`[tan θ + 1/cos θ]^2 + [tan θ - 1/cos θ]^2 = 2((1 + sin^2 θ)/(1 - sin^2 θ))`
Prove the following trigonometric identities
If x = a sec θ + b tan θ and y = a tan θ + b sec θ, prove that x2 − y2 = a2 − b2
Prove the following identities:
`(1 - 2sin^2A)^2/(cos^4A - sin^4A) = 2cos^2A - 1`
`cos^2 theta + 1/((1+ cot^2 theta )) =1`
`{1/((sec^2 theta- cos^2 theta))+ 1/((cosec^2 theta - sin^2 theta))} ( sin^2 theta cos^2 theta) = (1- sin^2 theta cos ^2 theta)/(2+ sin^2 theta cos^2 theta)`
Show that none of the following is an identity:
(i) `cos^2theta + cos theta =1`
Write the value of `(sin^2 theta 1/(1+tan^2 theta))`.
If cos \[9\theta\] = sin \[\theta\] and \[9\theta\] < 900 , then the value of tan \[6 \theta\] is
If x = r sinA cosB , y = r sinA sinB and z = r cosA , prove that `x^2 + y^2 + z^2 = r^2`
If `asin^2θ + bcos^2θ = c and p sin^2θ + qcos^2θ = r` , prove that (b - c)(r - p) = (c - a)(q - r)
Prove that `sinA/sin(90^circ - A) + cosA/cos(90^circ - A) = sec(90^circ - A) cosec(90^circ - A)`
Prove that sec θ. cosec (90° - θ) - tan θ. cot( 90° - θ ) = 1.
If A = 60°, B = 30° verify that tan( A - B) = `(tan A - tan B)/(1 + tan A. tan B)`.
Prove that sin2 5° + sin2 10° .......... + sin2 85° + sin2 90° = `9 1/2`.
If `(cos alpha)/(cos beta)` = m and `(cos alpha)/(sin beta)` = n, then prove that (m2 + n2) cos2 β = n2
If 2sin2β − cos2β = 2, then β is ______.
Simplify (1 + tan2θ)(1 – sinθ)(1 + sinθ)
Prove the following trigonometry identity:
(sinθ + cosθ)(cosecθ – secθ) = cosecθ.secθ – 2 tanθ